УДК 550.837.75:553.98

В. Ф. ЯНУШКЕВИЧ, К. И. КРЕМЕНЯ

АНАЛИЗ ДВУХВОЛНОВОГО ВЗАИМОДЕЙСТВИЯ ЭЛЕКТРОМАГНИТНЫХ ВОЛН С АНИЗОТРОПНЫМИ СРЕДАМИ НАД УГЛЕВОДОРОДНЫМИ ЗАЛЕЖАМИ

Полоцкий государственный университет

(Поступила в редакцию 15.03.2014)

Введение. Исследование взаимодействия электромагнитных волн (ЭМВ) с углеводородными залежами (УВЗ) может быть использовано в поисковой геофизике для повышения точности и уровня достоверности электромагнитных методов (ЭММ) обнаружения залежей нефти и газа (углеводородов).

Результаты анализа двухчастотного взаимодействия с УВЗ и его экспериментального исследования представлены во многих работах, например [1–3]. Вместе с тем для реализации новых ЭММ представляет теоретический и практический интерес анализ процесса взаимодействия двухволновых ЭМВ с анизотропными средами (AC), образующимися над залежами и скоплениями углеводородов.

Исследование распространения радиоволн (PPB) над УВЗ проводится в рамках квазигидродинамического приближения, так как учет постоянного магнитного поля, взаимодействия частиц в широких пределах изменения параметров AC делает весьма громоздким последующий анализ взаимодействия со средой на основе кинетического и гидродинамического рассмотрения [4, 5].

Объекты и методы исследования. Рассмотрим взаимодействие в режиме двухволновой ЭМВ вида

$$\vec{e}(t) = \vec{e}_1(t, z) + \vec{e}_2(t, z),$$
 (1)

$$\vec{e}_1(t) = E_1 \cos\left(\omega_1 t + \varphi_1 - k_1 z\right),\tag{2}$$

$$\vec{e}_{2}(t) = E_{2}\cos(\omega_{2}t + \varphi_{2} - k_{2}z).$$
(3)

Здесь E_1 , E_2 , ω_1 , ω_2 – соответственно амплитуды и частоты двух ЭМВ; φ_1 , φ_2 – начальные фазы, k_1 , k_2 – волновые числа первой и второй ЭМВ, z – направление РРВ.

Следует отметить принципиальное отличие двухволновой ЭМВ от двухчастотного сигнала. Формирование сигнала вида (1) осуществляется двумя независимыми источниками колебаний, которые генерируют две ЭМВ, распространяющиеся в среде со своими значениями волновых чисел k_1 и k_2 (2), (3).

Режим двухчастотного взаимодействия характеризуется источником ЭМВ, генерирующим сигнал в виде суммы двух колебаний:

$$\vec{e}(t) = \vec{e}_1(t) + \vec{e}_2(t),$$
 (4)

$$\vec{e}_1(t) = E_1 \cos(\omega_1 t + \varphi_1), \tag{5}$$

$$\vec{e}_2(t) = E_2 \cos(\omega_2 t + \varphi_2). \tag{6}$$

Таким образом, отличие данных режимов заключается в том, что в режиме двухволновой ЭМВ осуществляется пространственное взаимодействие АС и зондирующего сигнала.

Цель настоящей работы – анализ изменения электродинамических параметров среды над углеводородными залежами при использовании двух принципиально отличающихся режимов взаимодействия AC с ЭМВ.

Выведен тензор диэлектрической проницаемости среды над УВЗ вида

$$\dot{\tilde{\epsilon}} = \begin{vmatrix} \dot{\epsilon}_1 & j\dot{\epsilon}_2 & 0 \\ -j\dot{\epsilon}_1 & \dot{\epsilon}_1 & 0 \\ 0 & 0 & \dot{\epsilon}_3 \end{vmatrix}.$$
(7)

Информацию о свойствах углеводородных залежей несут компоненты тензора (7), подлежащие исследованию при различных режимах РРВ. Вывод тензора диэлектрической проницаемости основывается на решении уравнения движения электрона:

$$m\frac{d\vec{\upsilon}_e}{dt} + \nu_i m\dot{\vec{\upsilon}}_e = g_e \dot{\vec{E}} + g_e \mu_0 \left[\dot{\vec{\upsilon}}_e, \ \dot{\vec{H}}_0 \right],\tag{8}$$

где m, \dot{v}_e , g_e – масса, скорость движения и заряд электрона; v_i – частота столкновений электрона с тяжелыми частицами *i*-го сорта в единицу времени; μ_0 – магнитная проницаемость вакуума; \vec{E} – напряженность электрического поля ЭМВ; \vec{H}_0 – напряженность магнитного поля Земли.

В немагнитной AC (магнитная проницаемость исследуемой среды μ_r равняется μ_0) плотность полного тока

$$\dot{\vec{\delta}}_{\Sigma} = \dot{\vec{\delta}}_{\rm CM} + \dot{\vec{\delta}}_{\rm np} = j\omega\varepsilon_0\varepsilon_r \dot{\vec{E}} + g_e N_e \dot{\vec{\upsilon}}_e \tag{9}$$

определяется током смещения $\dot{\vec{\delta}}_{cM}$ в диэлектрике с проницаемостью ε_r и током проводимости $\dot{\vec{\delta}}_{np}$ с известной концентрацией электронов N_e .

Рассмотрено взаимодействие ЭМВ с залежью для случая воздействия двухволнового сигнала в режиме мощного низкочастотного (НЧ) колебания с коэффициентами $K_E = E_1 / E_2$ и $K_{\omega} = \frac{\omega_1}{\omega_2} \ll 1$.

Суммарный сигнал (1) может быть представлен в виде

$$\vec{e}(t) = \vec{E}_m(t) \exp\left[j\Omega(t)\right]. \tag{10}$$

Для нахождения огибающей $E_m(t)$ и мгновенной частоты $\Omega(t)$ двух взаимодействующих сигналов $e_1(t)$ и $e_2(t)$ необходимо воспользоваться преобразованием Гильберта [6].

Амплитуда огибающей равна

$$\vec{E}_m(t) = E_1 [1 + K_E \cos((\Delta \omega + \Delta \omega_{\upsilon})t + \Delta \phi)], \qquad (11)$$

где

$$\Delta \omega_{\upsilon} = \frac{\omega_1 \upsilon_1}{c} - \frac{\omega_2 \upsilon_2}{c},\tag{12}$$

$$\Delta \varphi = \varphi_1 - \varphi_2. \tag{13}$$

В выражении (12) фигурируют скорости двух ЭМВ υ_1 , υ_2 и скорость света $c = 3 \cdot 10^8$ м/с. Мгновенная частота будет определена выражением

$$\Omega(t) = \psi_1 t + \int_0^t K_E \Delta \psi \frac{K_E + \cos(\Delta \psi t + \Delta \varphi) dt}{1 + K_E^2 + 2K_E \cos(\Delta \psi t + \Delta \varphi)},$$
(14)

где

$$\psi_1 = \omega_1 - ck_1, \tag{15}$$

$$\Delta \Psi = \omega_2 \left[K_{\omega} \left(1 - \frac{\upsilon_1}{c} \right) - \left(1 - \frac{\upsilon_2}{c} \right) \right].$$
(16)

112

Для нахождения искомого решения определяем интеграл в выражении (14), который равен сумме двух интегралов. Первый из них определяется следующим образом:

$$\int_{0}^{t} \frac{K_E}{1 + K_E^2 + 2K_E \cos\left(\Delta\psi t + \Delta\varphi\right)} dt = K_E \left(t + \frac{\Delta\varphi}{\Delta\psi}\right).$$
(17)

Выражение (17) получается с использованием подстановок $\Delta \psi + \Delta \phi = \alpha$ и $u = tg\left(\frac{\alpha t}{2}\right)$. Второй интеграл равен

$$\int_{0}^{t} \frac{\cos(\Delta\psi t + \Delta\phi)}{1 + K_{E}^{2} + 2K_{E}\cos(\Delta\psi t + \Delta\phi)} dt = \frac{1}{\Delta\psi} \frac{\sin(\Delta\psi t + \Delta\phi)}{\Delta\psi t + \Delta\phi}.$$
(18)

Выражение (18) определяется с помощью подстановки $\alpha = \Delta \psi t + \Delta \phi$ и интегрированием по частям с использованием переменных $u_1 = \cos \alpha t$, $\upsilon_1 = t / (1 - K_E^2)$ и $u_2 = t$, $\upsilon_2 = -1/2 \cos 2t$. В результате сигнал (11) преобразуется к виду

$$e(t) = E_1 \Big[1 + K_E \cos\left(\left(\Delta \omega + \Delta \omega_{\upsilon} \right) t \right) + \Delta \varphi \Big] \times \\ \cos \Big[\Big(K_{\omega} \omega_2 + K_E^2 \Delta \psi \Big) t + K_E^2 \Delta \varphi + \frac{K_E}{\Delta \psi t + \Delta \varphi} \sin\left(\Delta \psi t + \Delta \varphi \right) \Big].$$
(19)

Из уравнения (8) получаются составляющие скорости движения электрона соответственно по координатам x, y, z:

$$\begin{split} \vartheta_{x} &= \frac{g_{e}}{m} E_{x} [1 + K_{E} \cos(\Delta \omega + \Delta \omega_{9})t + \Delta \phi] \frac{j\tilde{\omega}_{1B} + V_{i}}{(j\tilde{\omega}_{1B} + V_{i})^{2} + \omega_{r}^{2}} - \\ &\qquad \frac{g_{e}}{m} \frac{\omega_{r} E_{y} [1 + K_{E} \cos(\Delta \omega + \Delta \omega_{9})t + \Delta \phi]}{(j\tilde{\omega}_{1B} + V_{i})^{2} + \omega_{r}^{2}}, \\ \vartheta_{y} &= \frac{g_{e}}{m} E_{x} [1 + K_{E} \cos(\Delta \omega + \Delta \omega_{9})t + \Delta \phi] \frac{\omega_{r}}{(j\tilde{\omega}_{1B} + V_{i})^{2} + \omega_{r}^{2}} + \\ &\qquad \frac{g_{e}}{m} \frac{E_{y} [1 + K_{E} \cos(\Delta \omega + \Delta \omega_{9})t + \Delta \phi]}{(j\tilde{\omega}_{1B} + V_{i})^{2} + \omega_{r}^{2}}, \\ \vartheta_{z} &= \frac{g_{e}}{m} \frac{E_{z} [1 + K_{E} \cos(\Delta \omega + \Delta \omega_{9})t + \Delta \phi]}{j\tilde{\omega}_{1B} + V_{i}}. \end{split}$$

$$\end{split}$$

В выражениях (20) E_x , E_y , E_z – составляющие напряженности электрического поля соответственно по координатам x, y, z.

Частотная компонента, определяющая параметры воздействующих сигналов:

$$\tilde{\omega}_{1B} = K_{\omega}\omega_2 + K_E^2 \Delta \psi + K_E \Delta \psi \cos(\Delta \psi t + \Delta \phi).$$
⁽²¹⁾

Гиротропная частота определяется следующим выражением:

$$\omega_r = \frac{g_e \mu_0 H_0}{m}.$$
(22)

Тензор диэлектрической проницаемости среды над УВЗ получен из уравнения (9) и определяется компонентами:

$$\begin{split} \dot{\varepsilon}_{1} &= \varepsilon_{\tau} \frac{\tilde{\omega}_{1B}}{\omega_{2}} + \sum_{i=1}^{2} \left\{ \frac{\omega_{IIi}^{2} \tilde{\omega}_{1B}}{\omega_{2}} \frac{\omega_{ri}^{2} - \tilde{\omega}_{1B}^{2} - V_{i}^{2}}{(V_{i}^{2} + \omega_{ri}^{2} - \tilde{\omega}_{1B}^{2})^{2} + 4\tilde{\omega}_{1B}^{2}V_{i}^{2}} - j \left[\frac{-\varepsilon_{\tau}k_{E} \sin(\Delta\psi t + \Delta\phi)(\Delta\omega + \Delta\omega_{\upsilon})}{1 + k_{E} \cos(\Delta\psi t + \Delta\phi)} + \frac{\delta_{\tau}}{\omega_{2}\varepsilon_{0}} + \frac{\omega_{IIi}^{2}V_{i}^{2}}{\omega_{2}} \frac{\tilde{\omega}_{1B}^{2} + V_{i}^{2} + \omega_{ri}^{2}}{(V_{i}^{2} + \omega_{ri}^{2} - \tilde{\omega}_{1B}^{2})^{2} + 4\tilde{\omega}_{1B}^{2}V_{i}^{2}} \right] \right\}, \\ \dot{\varepsilon}_{2} &= \sum_{i=1}^{2} \left\{ \frac{\omega_{IIi}^{2}\tilde{\omega}_{1B}}{\omega_{2}} \frac{\omega_{ri}^{2} - \tilde{\omega}_{1B}^{2} + V_{i}^{2}}{(V_{i}^{2} + \omega_{ri}^{2} - \tilde{\omega}_{1B}^{2})^{2} + 4\tilde{\omega}_{1B}^{2}V_{i}^{2}} - 2j \frac{\tilde{\omega}_{1B}^{2}V_{i}^{2}\omega_{IIi}^{2}\omega_{ri}}{\left[\left(V_{i}^{2} + \omega_{ri}^{2} - \tilde{\omega}_{1B}^{2}\right)^{2} + 4\tilde{\omega}_{1B}^{2}V_{i}^{2}} - 2j \frac{\tilde{\omega}_{1B}^{2}V_{i}^{2}\omega_{IIi}^{2}\omega_{ri}}{\left[\left(V_{i}^{2} + \omega_{ri}^{2} - \tilde{\omega}_{1B}^{2}\right)^{2} + 4\tilde{\omega}_{1B}^{2}V_{i}^{2}} - 2j \frac{\tilde{\omega}_{1B}^{2}V_{i}^{2}\omega_{IIi}^{2}\omega_{ri}}{\left[\left(V_{i}^{2} + \omega_{ri}^{2} - \tilde{\omega}_{1B}^{2}\right)^{2} + 4\tilde{\omega}_{1B}^{2}V_{i}^{2}} - 2j \frac{\tilde{\omega}_{1B}^{2}V_{i}^{2}\omega_{IIi}^{2}\omega_{ri}}{\left[\left(V_{i}^{2} + \omega_{ri}^{2} - \tilde{\omega}_{1B}^{2}\right)^{2} + 4\tilde{\omega}_{1B}^{2}V_{i}^{2}} - 2j \frac{\tilde{\omega}_{1B}^{2}V_{i}^{2}\omega_{IIi}^{2}\omega_{ri}}{\left[\left(V_{i}^{2} + \omega_{ri}^{2} - \tilde{\omega}_{1B}^{2}\right)^{2} + 4\tilde{\omega}_{1B}^{2}V_{i}^{2}} - 2j \frac{\tilde{\omega}_{1B}^{2}V_{i}^{2}\omega_{IIi}^{2}\omega_{ri}}{\left[\left(V_{i}^{2} + \omega_{ri}^{2} - \tilde{\omega}_{1B}^{2}\right)^{2} + 4\tilde{\omega}_{1B}^{2}V_{i}^{2}} - 2j \frac{\tilde{\omega}_{1B}^{2}V_{i}^{2}\omega_{IIi}^{2}\omega_{ri}}{\left[\left(V_{i}^{2} + \omega_{ri}^{2} - \tilde{\omega}_{1B}^{2}\right)^{2} + 4\tilde{\omega}_{1B}^{2}V_{i}^{2}} - 2j \frac{\tilde{\omega}_{1B}^{2}V_{i}^{2}}{\left[\left(V_{i}^{2} + \omega_{ri}^{2} - \tilde{\omega}_{1B}^{2}\right)^{2} + 4\tilde{\omega}_{1B}^{2}V_{i}^{2}} - 2j \frac{\tilde{\omega}_{1B}^{2}V_{i}^{2}}{\left[\left(V_{i}^{2} + \omega_{ri}^{2} - \tilde{\omega}_{1B}^{2}\right)^{2} + 4\tilde{\omega}_{1B}^{2}V_{i}^{2}} - 2j \frac{\tilde{\omega}_{1B}^{2}V_{i}^{2}}{\left[\left(V_{i}^{2} + \omega_{ri}^{2} - \tilde{\omega}_{1B}^{2}\right)^{2} + 4\tilde{\omega}_{1B}^{2}V_{i}^{2}} - 2j \frac{\tilde{\omega}_{1B}^{2}V_{i}^{2}}{\left[\left(V_{i}^{2} + \omega_{ri}^{2} - \tilde{\omega}_{1B}^{2}\right)^{2} + 4\tilde{\omega}_{1B}^{2}V_{i}^{2}} - 2j \frac{\tilde{\omega}_{1B}^{2}V_{i}^{2}}{\left[\left(V_{i}^{2} + \omega_{ri}^{2}\right)^{2} + 4\tilde{\omega}_{1B}^{2}V_{i}^{2}} - 2j \frac{\tilde{\omega}_{1B}^{2$$

В выражениях (23) фигурируют удельная проводимость среды δ_τ и плазменная частота

$$\omega_{\Pi i} = g_i \left[\frac{N_i}{m_i \varepsilon_0} \right]^{1/2}, \tag{24}$$

где i = 1 соответствует электронам, i = 2 – ионам.

Результаты и их обсуждение. Проведен анализ величин $\operatorname{Re}\dot{\varepsilon}_R$, $\operatorname{Re}\dot{\varepsilon}_L$, $\operatorname{arg}\dot{\varepsilon}_R$, $\operatorname{arg}\dot{\varepsilon}_L$, где

$$\dot{\varepsilon}_R = \dot{\varepsilon}_1 + \dot{\varepsilon}_2, \tag{25}$$

$$\dot{\varepsilon}_L = \dot{\varepsilon}_1 - \dot{\varepsilon}_2. \tag{26}$$

При этом использовались экспериментально полученные данные над залежью углеводородов [4]; диэлектрическая проницаемость вмещающих пород $\varepsilon_{\tau} = 10$; удельная электрическая проводимость $\delta_{\tau} = 0,01 \text{ См/м}$, напряженность магнитного поля Земли $H_0 = 39 \text{ А/м}$; концентрация частиц $N_e = N_i = 10^{16} \text{ м}^3$; эффективные частоты столкновений: электронно-ионная $V_e = 10^9 \text{ c}^{-1}$ и ионная $V_i = 0,5 \cdot 10^7 \text{ c}^{-1}$. Моделирование осуществлялось в программном пакете MATLAB для частоты $f_2 = 10 \Gamma \mu - 10 \Gamma \Gamma \mu$ и сдвига фаз двух ЭМВ $\Delta \phi = 0^\circ$.

Установлено, что диэлектрическая проницаемость $\text{Re}\dot{\epsilon}_R$ (рис. 1, *a*) имеет частотную зависимость. В низкочастотном диапазоне величина проницаемости положительная, плавно уменьшается с ростом f_2 .

В области частот $f_2 \approx 1 \text{ M}\Gamma$ ц значение $\text{Re}\dot{\epsilon}_R$ снижается до нуля. Применение высоких частот для зондирования УВЗ практически не влияет на диэлектрическую проницаемость.

Сравнивая аналогичный двухчастотный режим взаимодействия ЭМВ со средой над залежью [1], следует отметить: во-первых, значение частоты перехода через нуль для двухволнового режима смещается влево на 2–5 МГЦ для различных значений K_E и K_{ω} ; во-вторых, в более высокочастотном диапазоне вариация величины Re $\dot{\varepsilon}_R$ значительно ниже, чем для аналогичного двухчастотного режима (может достигать 20%).

Диэлектрическая проницаемость Re $\dot{\varepsilon}_L$ (рис. 1, δ) плавно изменяется от отрицательных величин, принимая положительные значения на частоте $f_2 \approx 100 \text{ M}\Gamma\mu$. Применение двухволнового режима приводит к смещению частоты перехода через нуль на 50–100 МГ μ по сравнению с двухчастотным режимом [1]. В высокочастотном диапазоне вариация Re $\dot{\varepsilon}_L$ значительно ниже, чем для аналогичного двухчастотного ЭМВ с такими же параметрами K_E и K_{ω} (отличие до 20%).

Фазовые характеристики диэлектрических проницаемостей (рис. 2) отличаются от аналогичных для двухчастотной ЭМВ.

Рис. 1. Зависимости $\dot{\varepsilon}_R = \psi(f_2)$ (a) и $\dot{\varepsilon}_L = \psi(f_2)$ (б) для $k_\omega = 10^{-1}$ (l); для $k_\omega = 10^{-3}$ (2); для $k_\omega = 10^{-6}$ (3)

В низкочастотном диапазоне в режиме двухволнового взаимодействия наблюдается рост фазы с характерными точками перехода на частотах $f_2 \approx 1 \text{ M}\Gamma$ ц и $f_2 \approx 100 \text{ M}\Gamma$ ц. Для двухчастотной ЭМВ фаза примерно постоянна до частот 0,9–2 ГГц и далее резко уменьшается до нуля.

Заключение. Проведенный анализ показал, что компоненты тензора диэлектрической проницаемости среды над УВЗ в режиме двухволнового взаимодействия имеют частотную зависимость.

Сравнение режимов двухчастотного и двухволнового РРВ выявило различия в исследуемых характеристиках. Данный факт может быть использован для повышения информативности ЭММ разведки нефти и газа, так как анализ указанных выше режимов для обычных изотропных сред не выявил проявления аномаль-

ных эффектов. Возможность перестройки устройства георазведки с одного режима на другой при наличии залежи дополняет функциональные возможности для поиска УВЗ.

Результаты исследований могут быть применены для разработки радиотехнических систем ближней и дальней радиолокации, для повышения точности и уровня достоверности методов георазведки.

Литература

- 1. Гололобов Д. В., Янушкевич В. Ф. // Весці НАН Беларусі. Сер.фіз. тэхн. навук. 2002. № 1. С.49–54.
- 2. Гололобов Д. В., Янушкевич В. Ф. //Изв. Беларус. инж. акад. Мн., 2001. № 1(11). С. 101-104.
- 3. Гололобов Д. В., Калинцев С. В., Янушкевич В. Ф. // Весці НАН Беларусі. Сер.фіз. тэхн. 2010. № 4. С.98–101.
- 4. Москвичев В. Н. // Радиотехника и электроника. Мн., 1988. Вып. 18. С. 91-96.
- 5. Shkarofsky I. P. // I. Plasma Phys. 1986. Vol. 35, N 2. P. 319-331.
- 6. Гоноровский Н. С. Радиотехнический цепи и сигналы. М., 1971.

V. F. YANYSHKEVICH, K. I. KREMENYA

ANALYSIS OF INTERACTION OF TWO ELECTROMAGNETIC WAVES WITH ANISOTROPIC MEDIUM OVER HYDROCARBON DEPOSITS

Summary

The results of theoretical analysis of interaction of two electromagnetic waves with hydrocarbon environments over hydrocarbon deposit are presented. A comparison with two-frequency regime is carried out. The recommendations for development of search methods for hydrocarbon deposits are given.