ДИАГНОСТИКА И БЕЗОПАСНОСТЬ ТЕХНИЧЕСКИХ И ПРИРОДНЫХ СИСТЕМ

УДК 620.179.14

В. А. БУРАК, З. М. КОРОТКЕВИЧ

ИНФОРМАТИВНЫЕ ПАРАМЕТРЫ ДЛЯ МАГНИТНОГО КОНТРОЛЯ КАЧЕСТВА ОТПУСКА ИНСТРУМЕНТАЛЬНОЙ УГЛЕРОДИСТОЙ СТАЛИ У10A

Институт прикладной физики НАН Беларуси

(Поступила в редакцию 28.11.2013)

Введение. Инструментальные углеродистые стали нашли широкое применение на предприятиях машиностроительного и металлургического профиля для изготовления режущего и измерительного инструментов, штампов холодного и горячего деформирования. Обеспечение необходимых эксплуатационных свойств изделий из инструментальных углеродистых сталей (высокая твердость режущей кромки, износостойкость, прочность, достаточная вязкость и теплостойкость) достигается термической обработкой — закалкой и последующим низкотемпературным отпуском, снимающим большую часть закалочных напряжений [1].

Среди методов неразрушающего контроля структурного состояния ферромагнитных материалов и изделий после различных видов термообработки широкое распространение получили магнитные методы [2, 3]. Однако стандартные магнитные характеристики инструментальных углеродистых сталей и, в частности, стали У10А неоднозначно зависят от температуры отпуска. Поэтому установление новых или комбинаций известных магнитных параметров, по которым можно контролировать качество отпуска инструментальных сталей, является весьма актуальной задачей.

В связи с трудоемкостью измерения магнитных свойств в статическом режиме перспективными являются измерения при квазистатическом режиме перемагничивания [4]. Несомненное достоинство измерений в замкнутой магнитной цепи — определение магнитных характеристик материала, а не тела изделия, которые несут наиболее достоверную информацию о структуре и физико-механических свойствах контролируемых изделий независимо от их формы и размеров [5].

В настоящей работе приводятся результаты исследований по установлению магнитных параметров инструментальной высококачественной углеродистой стали У10А, измеренных в квазистатическом режиме перемагничивания в замкнутой магнитной цепи, и комбинаций этих параметров, однозначно определяющих температуру, при которой проводился отпуск после закалки от 770 °C.

Режимы термообработки и методика измерений. Инструментальная высококачественная углеродистая сталь У10А широко используется для изготовления инструмента, работающего в условиях, не вызывающих разогрева рабочей поверхности. Так как для этой марки стали характерна несколько лучшая вязкость, чем у инструментальной углеродистой стали У10, то сталь У10А часто применяют для изготовления инструмента с более тонкой режущей кромкой. Химический состав этой стали представлен в таблице.

Сталь У10A может содержать примеси кроме перечисленных в таблице и других химических элементов: до 0,40 % Cr, до 0,25 % Ni и до 0,25 % Cu.

Химический состав стали У10А (ГОСТ 1435-99) [6]

Массовая доля элемента, %				
Углерод	Кремний	Марганец	Cepa	Фосфор
			не более	
0,95-1,09	0,17-0,33	0,17-0,28	0,018	0,025

Для получения мартенситной структуры с включениями вторичного цементита готовые изделия из стали У10А подвергают неполной закалке на 50–70 °C выше критической точки A_{C1} , но ниже критической точки A_{Cm} и низкотемпературному отпуску (150–180 °C), который снимает внутренние напряжения и сохраняет высокую твердость [7]. Таким образом, рекомендуемые режимы термообработки этой стали следующие: температура нагрева под закалку $T_{\rm 3ak}$ = 770–800 °C (64–66 HRC) и температура отпуска $T_{\rm otn}$ = 150–180 °C (62–64 HRC). Закалочная среда – вода, отпуск проводится на воздухе. При закалке в масле $T_{\rm 3ak}$ повышают на 20 °C [6].

Большими недостатками стали У10А, как и других инструментальных углеродистых сталей, являются узкий интервал закалочных температур и необходимость закалки с охлаждением в воде (из-за низкой прокаливаемости). Последнее усиливает деформацию и коробление инструмента и приводит к образованию трещин, а превышение температуры нагрева под закалку на 10–15 °C сверх рекомендуемой по [6] значительно снижает прочность и вязкость, что связано с ростом зерна аустенита [1].

Для защиты от окисления и обезуглероживания целесообразно нагрев под закалку инструмента из стали У10А (диаметр до 120 и длина до 250 мм) проводить в соляных ваннах (72 % $\mathrm{BaCl_2} + 28$ % NaCl). При нагреве более крупного инструмента в камерных печах без защитной атмосферы необходимо применять упаковочные материалы. Для сталей с температурой закалки до 900 °C в качестве упаковочного материала используются древесный уголь + карбюризатор или смесь свежей и пережженной чугунной стружки [1].

Измерения магнитных свойств образцов стали У10А в квазистатическом режиме перемагничивания осуществлялись на установке УИМХ [4], предназначенной для получения основной кривой намагничивания и петли магнитного гистерезиса материала. Измерения проводили на кольцевых образцах, частота перемагничивания составляла 0,05 Гц.

Для проведения магнитных измерений в замкнутой магнитной цепи образцы подготавливались следующим образом: на них наносилась сначала измерительная, а затем намагничивающая обмотки. Обмотки друг от друга и от металла изолировались, а их витки располагались равномерно по длине окружности образца. Диаметр провода измерительной обмотки $0,16\,$ мм, намагничивающей $0,37\,$ мм. Число витков $W_{\rm изм}$ измерительной обмотки определялось из следующего соотношения:

$$W_{\text{\tiny H3M}} = \frac{\Phi_{\text{min}} C_B}{\mu_0 M_{\text{\tiny m}} S},\tag{1}$$

где S — площадь поперечного сечения образца (для магнитомягких сталей по [8] рекомендуется выбирать $S \ge 10~{\rm mm}^2$); $\Phi_{\rm min}$ — минимальная величина магнитного потока, которая измеряется установкой с точностью 2 % (для УИМХ $\Phi_{\rm min} = 2\cdot 10^{-5}~{\rm B}$ б); M_m — максимальная намагниченность, соответствующая вершине петли гистерезиса (для данной стали выбиралась равной 0,95·10⁶ A/м); C_B — постоянная магнитоизмерительной установки (для УИМХ C_B = 204).

Высота кольца h определялась из соотношения: $h = S/(R_{_{\mathrm{BII}}} - R_{_{\mathrm{BH}}})$.

Число витков намагничивающей обмотки $W_{\mbox{\scriptsize Ham}}$ вычислялось по соотношению

$$W_{_{\text{HAM}}} = \frac{\pi H_{_{m}}(R_{_{\text{BH}}} + R_{_{\text{BIII}}})}{2I_{_{m}}},$$
 (2)

где H_m — максимальная величина намагничивающего поля (H_m должна превышать значение коэрцитивной силы образца H_c в 5—10 раз); I_m — максимальное значение тока (для установки УИМХ I_m = 5A); $R_{\rm BH}$ — внешний и внутренний радиусы обмотки соответственно.

С учетом вышеизложенных требований для исследований магнитных свойств стали У10A изготовлены кольцевые образцы с внешним диаметром 17 мм; внутренним диаметром 13,2 мм и высотой 10 мм.

Для получения разных механических свойств и структур образцы стали У10А нагревались под закалку в течение 10 мин от рекомендуемой по ГОСТ температуры $T_{\rm 3ak}=770~{\rm ^{\circ}C}$ в среде, защищающей металл от обезуглероживания, и охлаждались в воде, а затем отпускались в течение 1 ч с охлаждением на воздухе при температурах 100, 175, 200, 225, 250, 275, 300, 350, 400, 450, 500, 550 и 600 ${\rm ^{\circ}C}$.

На установке УИМХ по основной кривой намагничивания и предельной петле магнитного гистерезиса определялись следующие магнитные характеристики:

полевые: коэрцитивная сила H_c ; релаксационная коэрцитивная сила H_r ; напряженности магнитного поля $H_{\mu m}$ и $H_{\mu dm}$, при которых достигаются соответственно максимальное значение магнитной проницаемости μ_m по начальной кривой намагничивания и максимальное значение дифференциальной магнитной проницаемости μ_{dm} по петле гистерезиса;

намагниченности: максимальная M_m ; остаточная M_r ; $M_{\mu dm}$, соответствующая максимуму дифференциальной магнитной проницаемости; релаксационная M_{Hr} ; остаточная M_{rc} после снятия поля, равного H_c ; M_{Hc} и M_{2Hc} при магнитном поле, равном коэрцитивной силе H_c и двум коэрцитивным силам $2H_c$ соответственно;

магнитных проницаемостей: начальная $\mu_{\rm H}$; максимальная μ_{m} по начальной кривой намагничивания и максимальная дифференциальная μ_{dm} по петле магнитного гистерезиса; дифференциальная магнитная проницаемость μ_{dHc} при размагничивающем поле, равном коэрцитивной силе H_{c} .

Дополнительно по результатам измерений стандартных характеристик по основной кривой намагничивания и по предельной петле магнитного гистерезиса рассчитывались: намагниченность насыщения M_s (по закону приближения к насыщению), релаксационная магнитная проницаемость $\mu_r = M_{Hr}/H_r + 1$, магнитная проницаемость $\mu_{rc} = M_{rc}/H_c + 1$ на кривой возврата от поля, равного коэрцитивной силе, и параметр $K_n = 1 - M_r/M_m$.

Результаты эксперимента. Зависимости стандартных магнитных характеристик образцов из стали У10A, закаленных от 770 °C и отпущенных при разных температурах, представлены на рис. 1.

Изменения магнитных свойств заэвтектоидной углеродистой инструментальной стали У10A, отпущенной при разных температурах, обусловлены соответствующими изменениями ее структуры, которая в неотпущенном состоянии представляет собой мартенсит с включениями вторичного цементита.

Повышение температуры отпуска до 175 °C практически не изменяет величины большинства рассматриваемых магнитных параметров (M_m , M_s , M_{Hc} , M_{2Hc} , $M_{\mu m}$, M_r , μ_m , μ_{μ} , μ_r и μ_{rc}), однако для полевых параметров (H_c , H_r , $H_{\mu m}$ и $H_{\mu dm}$) и параметра K_n наблюдается незначительное уменьшение значений в среднем на 10–15 %. Величины остальных магнитных параметров (M_{Hr} , M_{rc} , μ_{dm} , μ_{dHc}) изменяются незначительно и неоднозначно, что объясняется снятием напряжений в структуре металла.

Полевые параметры H_c , H_r , $H_{\mu m}$ и $H_{\mu dm}$ с дальнейшим повышением температуры отпуска до 350 °C продолжают уменьшаться в 3–3,5 раза, затем их величина возрастает с увеличением температуры до 450 °C и снова плавно уменьшается. Такой резкий спад коэрцитивной силы и других рассматриваемых полевых характеристик совпадает со значительным снижением твердости изделий из стали У10А при повышении температуры отпуска. Таким образом, все полевые характеристики можно использовать для контроля среднетемпературного отпуска и сортировки недогрева и перегрева при отпуске изделий из инструментальной углеродистой стали У10А, однако при температурах отпуска 300–600 °C применять эти параметры невозможно.

Намагниченности M_m , M_s и $M_{\mu m}$ с увеличением температуры отпуска практически не изменяются, имея разброс своих значений в пределах нескольких процентов. В то же время с ростом температуры отпуска до 450 °C остаточная намагниченность M_p практически однозначно и линейно возрастает, а с дальнейшим повышением температуры отпуска ее величина уменьшается.

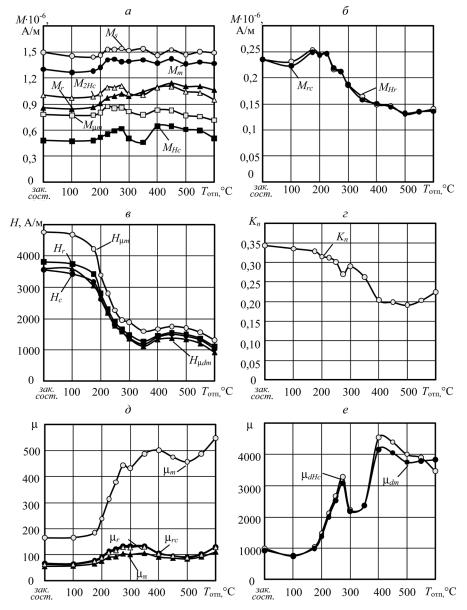


Рис. 1. Зависимость магнитных параметров стали У10А при квазистатическом перемагничивании от температуры отпуска; магнитные характеристики: a, δ — намагниченностей; ϵ — полевые; ϵ — расчетный параметр; ϵ — магнитных проницаемостей

Намагниченности M_{Hc} и M_{2Hc} имеют похожий ход зависимостей и с повышением температуры отпуска до 275 °C увеличиваются, имеют перегиб при 350 °C и на интервале 400–600 °C наблюдается уменьшение их значений. Все зависимости рассмотренных намагниченностей характеризуются малой чувствительностью и непригодностью к использованию при контроле качества отпуска стали У10А.

Намагниченности M_{Hr} и M_{rc} характеризуются гораздо большей чувствительностью к изменению температуры отпуска в сравнении с другими видами намагниченностей, однако их практически совпадающие зависимости от температуры также неоднозначны. При температурах отпуска 175—225 °C намагниченности M_{Hr} и M_{rc} изменяются незначительно, при повышении температуры отпуска до 500 °C эти параметры однозначно уменьшаются наполовину и при температуре отпуска свыше 500 °C незначительно возрастают. Поэтому релаксационная намагниченность M_{Hr} и остаточная намагниченность M_{rc} после снятия поля, равного коэрцитивной силе, могут быть рекомендованы для контроля среднетемпературного отпуска инструментальной углеродистой стали У10А.

Магнитные проницаемости $\mu_{\rm H}$, μ_r и μ_{rc} имеют неоднозначную зависимость от температуры отпуска при низкой чувствительности: до температуры отпуска 300 °C они возрастают, затем до 500 °C наблюдаются некоторый спад их значений и дальнейшее незначительное увеличение. Максимальная магнитная проницаемость μ_m характеризуется практически однозначным увеличением своего значения в 2,5 раза с ростом температуры отпуска на интервале 175–400 °C, затем уменьшением своей величины при повышении температуры отпуска до 500 °C и дальнейшим ростом. Дифференциальные магнитные проницаемости μ_{dm} и μ_{dHc} также имеют похожую неоднозначную зависимость от температуры отпуска. Они возрастают в 3 раза с ростом температуры отпуска до 275 °C, спадают и имеют минимальные значения при температурах 300 °C и вновь возрастают с увеличением температуры отпуска до 400 °C. Затем значение магнитной проницаемости μ_{dHc} снижается, а проницаемость μ_{dm} изменяется неоднозначно, имея перегиб при 500 °C.

Расчетный параметр K_n уменьшается с ростом температуры отпуска до 275 °C, имеет небольшое увеличение при $T_{\rm отп}=300$ °C и затем снова уменьшается до температуры отпуска 500 °C и возрастает. Этот параметр так же, как и полевые магнитные параметры, может использоваться для отбраковки недоотпущенных и переотпущенных изделий из стали У10А, однако в области температур низкотемпературного отпуска он малочувствителен, а в области высокотемпературного отпуска не позволяет определить температуру термообработки.

Ввиду отсутствия однозначной зависимости магнитных параметров по основной кривой намагничивания и по предельной петле магнитного гистерезиса от температуры отпуска во всем диапазоне ее изменения необходимо установить другие информативные параметры для контроля качества отпуска стали У10А.

Информативные параметры для контроля. Для повышения надежности контроля отпуска изделий из стали У10А во всем диапазоне изменения температуры можно использовать несколько магнитных характеристик. В [9] для повышения достоверности контроля рекомендуется вести его по двум параметрам: коэрцитивной силе H_c и намагниченности насыщения M_s , а также по коэрцитивной силе H_c и релаксационной магнитной проницаемости μ_r . Однако для стали У10А применение сочетания этих параметров затруднительно, так как величины намагниченности насыщения M_s и релаксационной магнитной проницаемости μ_r при повышении температуры отпуска изменяются незначительно, поэтому комбинация этих параметров не может решить проблему контроля температуры отпуска во всем диапазоне.

В качестве информативных параметров анализировались сумма, разность, произведение и частное от деления друг на друга магнитных параметров по предельной петле магнитного гистерезиса и по основной кривой намагничивания. Для проведения арифметических операций над разными по физической сути и по абсолютной величине магнитными характеристиками рассматривались их значения относительно закаленного состояния. Полученные зависимости представлены на рис. 2.

Для использования в качестве информативного параметра суммы магнитных параметров необходимо, чтобы оба используемых магнитных параметра с изменением температуры отпуска либо возрастали, либо убывали. Поэтому суммирование дает наилучшие результаты для сочетаний полевых параметров и намагниченностей. Зависимости информативных параметров U_1 и U_2 от температуры отпуска после закалки при 770 °C представлены на рис. 3, a:

$$U_{1} = M_{rc} / M_{rc}^{3ak} + H_{um} / H_{um}^{3ak}; \quad U_{2} = M_{hc} / M_{hc}^{3ak} + H_{c} / H_{c}^{3ak}. \tag{3}$$

Оба параметра пригодны для определения перегрева при отпуске и нечувствительны к недогреву при отпуске.

Перемножение величин параметров, как и суммирование, требует, чтобы оба используемых магнитных параметра с изменением температуры отпуска либо возрастали, либо убывали. Можно выделить только сочетание намагниченностей M_{rc} и M_{Hr} с релаксационной коэрцитивной силой H_r и напряженностью магнитного поля H_{um} (рис. 3, δ):

$$U_{3} = H_{\mu_{m}} / H_{\mu_{m}}^{3ak} M_{rc} / M_{rc}^{3ak}; \quad U_{4} = M_{Hr} / M_{Hr}^{3ak} H_{r} / H_{r}^{3ak}. \tag{4}$$

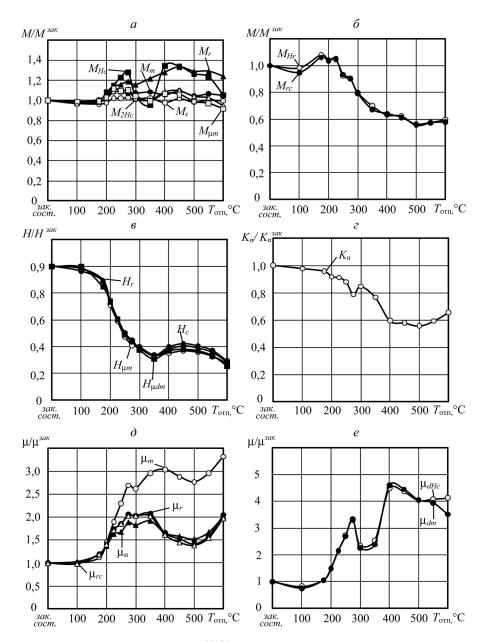


Рис. 2. Зависимость магнитных параметров стали У10А при квазистатическом перемагничивании от температуры отпуска в относительных единицах: a-e см. puc. 1

По параметрам U_3 и U_4 можно контролировать только среднетемпературный отпуск со средней чувствительностью на интервале 175–350 °C не ниже 0.04 %/°C.

Для использования в качестве информативного параметра разности магнитных характеристик необходимо, чтобы они имели различный ход зависимостей. Исходя из этого можно выделить следующие информативные параметры:

$$U_{5} = \mu_{m} / \mu_{m}^{3aK} - H_{c} / H_{c}^{3aK}; \quad U_{6} = \mu_{m} / \mu_{m}^{3aK} - M_{Hr} / M_{Hr}^{3aK}; \quad U_{7} = B_{r} / B_{r}^{3aK} - B_{\mu m} / B_{\mu m}^{3aK};$$

$$U_{8} = B_{r} / B_{r}^{3aK} - B_{Hm} / B_{Hm}^{3aK}; \quad U_{9} = M_{\mu_{m}} / M_{\mu_{m}}^{3aK} - \mu_{m} / \mu_{m}^{3aK}.$$

$$(5)$$

Зависимости параметров U_5 – U_9 от температуры отпуска показаны на рис. 3, ϵ . Как видно из рисунка, эти информативные параметры малопригодны для контроля температуры отпуска инструментальной углеродистой стали У10A, за исключением параметра U_7 , который хоть и имеет малую чувствительность (около 0,001 %/°C), но может быть использован для контроля средне-и высокотемпературного отпуска.

Рис. 3. Зависимость информационных параметров $U_1 - U_{14}$ от температуры отпуска стали У10А; информативные параметры: a — суммирование; δ — перемножение; ϵ — разность; ϵ — деление

При делении рассмотренные информативные параметры имеют следующий вид (рис. 3, г):

$$U_{10} = \frac{H_c / H_c^{3ak}}{\mu_m / \mu_m^{3ak}}; \ U_{11} = \frac{H_{\mu m} / H_{\mu m}^{3ak}}{M_r / M_r^{3ak}}; \ U_{12} = \frac{M_{Hr} / M_{Hr}^{3ak}}{\mu_m / \mu_m^{3ak}}; \ U_{13} = \frac{M_{Hr} / M_{Hr}^{3ak}}{B_r / B_r^{3ak}}; \ U_{14} = \frac{M_{\mu_m} / M_{\mu_m}^{3ak}}{\mu_m / \mu_m^{3ak}}.$$
 (6)

Информативные параметры U_{10} и U_{11} , представляющие собой частное от деления полевых характеристик H_c и $H_{\mu m}$, имеют ход зависимости от температуры отпуска, схожий с ходом зависимости данных полевых характеристик, и позволяют с хорошей чувствительностью (не ниже 0,005 %/°С) контролировать низко- и среднетемпературный отпуск. Информативный параметр U_{13} также имеет высокую чувствительность, однако пригоден для контроля температуры отпуска только в интервале 175–500 °C, т. е. контроль недоотпущенного состояния стали У10А с его помощью невозможен. Параметр U_{12} является наиболее предпочтительным для неразрушающего контроля качества отпуска стали У10А, так как он обеспечивает возможность контроля низко- и среднетемпературного отпуска. Однако точное определение по U_{12} температуры отпуска в интервале 400-600 °C проблематично.

Таким образом, для неразрушающего контроля отпуска после закалки инструментальной высококачественной углеродистой стали У10А можно рекомендовать в качестве информативного параметра частное от деления релаксационной намагниченности M_{Hr} на максимальную магнитную проницаемость μ_m .

Выводы

1. Недогрев при отпуске изделий из инструментальной высококачественной углеродистой стали У10А надежно выявляется по коэрцитивной силе H_c и величине напряженности магнитного поля $H_{\rm um}$, при которых достигаются соответственно максимальное значение магнитной

проницаемости μ_m по основной кривой намагничивания, а также по расчетному параметру

- $K_n = 1 M_r/M_m$.

 2. На перегрев при отпуске реагируют величины релаксационной намагниченности M_{Hr} и остаточной намагниченности M_{rc} после снятия поля, равного коэрцитивной силе.
- 3. Однозначно определять температуру отпуска во всем диапазоне ее изменения невозможно ни по одному из рассмотренных магнитных параметров, взятых по основной кривой намагничивания и предельной петле магнитного гистерезиса.
- 4. Для практической реализации контроля в качестве информативного параметра предпочтительнее использовать частное от деления релаксационной намагниченности M_{Hr} на максимальную магнитную проницаемость μ_m .

Литература

- 1. Геллер Ю. А. Инструментальные стали. М., 1983.
- 2. Михеев М. Н., Горкунов Э. С. Магнитные методы структурного анализа и неразрушающего контроля. М., 1993.
- 3. Мельгуй М. А. Магнитный контроль механических свойств сталей. Мн., 1980.
- 4. Матюк В. Ф., Осипов А. А. // Дефектоскопия. 2007. № 3. С. 12-25.
- 5. Костин В. Н., Осиниев А. А., Сташков А. Н., Царькова Т. П. // Дефектоскопия. 2004. № 3. С. 69–82.
- 6. Прутки, полосы и мотки из инструментальной нелегированной стали. Общетехнические технические условия: ГОСТ 1435-99. Введ. 01.09.2001. Мн.: Межгосударственный совет по стандартизации, метрологии и сертификиции, 2001.
 - 7. Лахтин Ю. М., Леонтьева В. П. Материаловедение. М., 1980.
- 8. Сталь электротехническая. Методы определения магнитных и электрических свойств: ГОСТ 12119.1-98. Введ. 01.07.1999. Мн.: Межгосударственный совет по стандартизации, метрологии и сертификации, 1999.
 - 9. Горкунов Э. С., Костин В. Н., Тартачная М. В. и др. // Дефектоскопия. 1990. № 1. С. 70–76.

V. A. BURAK, Z. M. KOROTKEVICH

INFORMATIVE PARAMETERS FOR MAGNETIC ESTIMATION OF TEMPERING QUALITY OF TOOL CARBON STEEL Y10A

Summary

Based on the analysis of the influence of tempering temperature on the structure and magnetic properties of tool carbon steel Y10A measured in the quasistatic remagnetization mode in a closed magnetic circuit, the new informative parameters for the magnetic testing which allow to reliably detect the whole range of tempering temperature of the steel are proposed.