ISSN 0002-3566 (print)

МАТЕРИАЛОВЕДЕНИЕ, МЕТАЛЛУРГИЯ

MATERIALS ENGINEERING, METALLURGY

УДК 539.4:669.3

Поступила в редакцию 09.09.2016 Received 09.09.2016

А. Ф. Ильющенко¹, И. В. Фомихина¹, М. М. Дечко², В. Н. Ковалевский³

¹Институт порошковой металлургии НАН Беларуси, Минск, Беларусь, ²Белорусский аграрный технический университет, Минск, Беларусь, ³Белорусский национальный технический университет, Минск, Беларусь

ДЕФОРМАЦИОННОЕ ИЗМЕЛЬЧЕНИЕ ЗЕРЕН МИКРОСТРУКТУРЫ ЛЕГИРОВАННЫХ СТАЛЕЙ ПРИ НЕСТАЦИОНАРНОЙ ИНТЕНСИВНОЙ ПЛАСТИЧЕСКОЙ ДЕФОРМАЦИИ ВЗРЫВОМ

Изучена зависимость размера зерна легированных высокопрочных сталей аустенитного, бейнитного, мартенситно-стареющего классов от температуры и степени деформации при нестационарной интенсивной пластической деформации взрывом. Построена модель, позволяющая рассчитать величину предела диспергирования и учитывающая зависимость коэффициента зернограничной диффузии от степени деформации и температуры. Результаты расчетов по предложенной формуле и их сравнение с экспериментальными данными показывают удовлетворительное совпадение. Отклонение составляет 3–5%. Установлено, что интенсивное измельчение под действием высокоскоростной пластической деформации взрывом высокопрочных сталей происходит при степенях деформации 20–30%. Увеличение степени деформации до 30–40% не приводит к изменению размера зерна. При деформациях более 40–50% накопленная пластическая деформация, вызывающая дополнительный локальный разогрев материала, обусловливает развитие рекристаллизационных процессов, в результате чего размеры зерна увеличиваются. При деформациях выше 50–60% в материалах возможно появление трещин.

Ключевые слова: интенсивная пластическая деформация взрывом, температура, измельчение зерна, модель предела диспергирования.

A. Ph. Ilyuschenko¹, I. V. Fomikhina¹, M. M. Dechko², V. N. Kovalevskij³

¹Powder Metallurgy Institute of the National Academy of Sciences of Belarus, Minsk, Belarus, ²Belarusian State Agrarian Technical University, Minsk, Belarus, ³Belarusian National Technical University, Minsk, Belarus

DEFORMATIONAL GRAIN GRINDING OF ALLOYED STEELS MICROSTRUCTURE AT NON-STATIONARY INTENSE PLASTIC DEFORMATION BY EXPLOSION

Dependence of grain size of alloyed high-strength steels of austenitic, bainitic, maraging classes on temperature and degree of deformation at non-stationary intensive plastic deformation by explosion has been studied. A model which enables to calculate dispergating limit value considering dependence of coefficient of grain-boundary diffusion on degree of deformation and temperature is constructed. The results of calculations by the offered formula and their comparing to experimental data show satisfactory coincidence. A rejection is 3-5%. It is set that the intensive growing shallow under the action of high-speed flowage the explosion of alloyed high-strength steels takes place at the degrees of deformation 20-30%. Increase of degree of deformation to 30-40% does not cause the change of size of grain. At deformations more than 40-50% the accumulated flowage causes additional local warming-up of material and development of recrystallizational processes, sizes of grain increase as a result. At deformations higher 50-60% appearances of cracks in materials is possible.

Keywords: intensive plastic deformation by explosion, temperature, grain grinding, the model of dispergating limit.

Введение. Известно, что в результате интенсивной пластической деформации металлов на уровне их микроструктуры образуется большое количество дефектов дислокационного и дисклинационного типов, приводящих к фрагментации кристаллической структуры. По мере деформирования происходит разориентация возникающих фрагментов, приводящая к измельче-

нию зерен микроструктуры, достигающих некоторого предельного значения d_{\min} . Величина d_{\min} зависит от типа структуры, способа деформирования и параметров процесса: скорости, степени и температуры деформации [1, 3].

В ряде работ предпринята попытка построения математических моделей, позволяющих рассчитать теоретическое значение d_{\min} [1–6]. В [1] изучены математические модели, описывающие зависимость величины предела измельчения зерен от природы материала и температуры интенсивной пластической деформации по технологии равноканального углового прессования. Данный метод реализует схему, при которой деформирование металла протекает в стационарных условиях (с постоянной и относительно невысокой скоростью деформации, при постоянных степени и температуре деформации). В качестве модельных структур рассматриваются гомогенные микроструктуры металлов и сплавов.

Деформационное измельчение зерен описано в [1] на основе двух механизмов фрагментации:

1. Аккомодационное внутризеренное скольжение. Формирующиеся на границах зерен дефекты и, в первую очередь, стыковые дисклинации создают в зернах микроструктуры мощные поля внутренних напряжений σ_i , вызывающие внутризеренное скольжение. Процесс деформации протекает под действием внутренних напряжений и обеспечивает релаксацию запасенной упругой энергии, связанной, главным образом, со стыковыми дисклинациями. При достижении некоторой критической мощности стыковых дисклинаций начинается испускание со стыков оборванных дислокационных стенок, вызывающих фрагментацию зерен.

2. Аккомодация стыковых дисклинаций путем диффузионного массопереноса. Энергия активации зернограничной диффузии в неравновесных границах зерен существенно зависит от избыточного свободного объема, связанного с внесенными в границу дефектами. При высокой плотности дефектов избыточный свободный объем может стать столь значительным, что энергия активации зернограничной диффузии может стать равной энергии активации диффузии в расплаве [5]. При малых размерах фрагментов скорость диффузионной аккомодации стыковых дисклинаций становится такой высокой, что мощность стыковых дисклинаций и величины, необходимой для испускания оборванной дислокационной стенки, т.е. для фрагментации. Вследствие развития диффузионной аккомодации стыковых дисклинаций появляется предел деформационного измельчения зерен, т. е. минимальный размер зерна, который не может быть уменьшен при заданных условиях пластического деформирования материала.

Основные этапы эволюции структуры, приводящие к образованию мелких зерен, включают в себя [1]: образование скоплений дислокаций; преобразование их в несовершенные границы, обособляющие ячейки – области кристалла с относительно малой плотностью дислокаций; образование полос, которые по мере нарастания деформации уменьшаются в поперечных размерах, изменяют направление развития и пересекаются.

Формирование мелких зерен является результатом многочисленных пересечений предельно тонких полос с большеугловыми границами.

Для расчета минимального размера зерна, достижимого при этих условиях, предложена следующая зависимость:

$$(d^*)^{3,5} \ge \chi \frac{K}{G} \frac{\delta D_b^*}{A_1 \xi \varepsilon_v} \frac{G\Omega}{kT},\tag{1}$$

где $\chi = \psi/\phi$ – геометрический коэффициент, в котором ψ – коэффициент пропорциональности, связывающий напряжение, вызывающее пластическую деформацию зерен, с пределом текучести материала, ϕ – геометрический множитель порядка 1; *К* – коэффициент Холла–Петча, связывающий предел текучести поликристаллического материала с размером зерна.

В ряде исследований показано, что коэффициент Холла-Петча зависит от различных факторов, сопровождающих процесс деформирования кристаллических структур [1–4]. В [3] приведена формула для расчета коэффициента Холла-Петча для крупнокристаллических металлов:

$$K_0 = \sqrt{\frac{2Gb\sigma^*}{\pi(1-\nu)}}.$$
(2)

Здесь σ^* – напряжение в зерне, при котором начинается пластическая деформация. В [3] эта величина приведена для IF-сталей (сталь с микроструктурой без дефектов внедрения) и равна 450 МПа; *v* – коэффициент Пуассона (для сталей 0,25); *G* – модуль сдвига, равный 8,1·10⁴ МПа; *b* – вектор Бюргерса, равный 2,58·10⁻¹⁰ м для ГЦК- и 2,48·10⁻¹⁰ м для ОЦК-решеток.

Расчет по формуле дает значение коэффициента Холла–Петча для ГЦК (8,93·10⁴ кг/(c²·м^{1/2}))и ОЦК (8,76·10⁴ кг/c²·м^{1/2})-решеток; δ – ширина границы, равная удвоенному вектору Бюргерса, $\delta = 2b = 5,16\cdot10^{-10}$ м; D_b^* – коэффициент зернограничной диффузии, равный $D_{bo}^* \exp(Q_b^*/kT)$; Q_b^* – энергия активации самодиффузии в равновесных границах зерен; Ω – атомный объем, равный 1,18·10⁻²³ см³ или 1,18·10⁻²⁹ м³; T – температура процесса, К.

В [6] указывается, что энергия активации зернограничной диффузии в неравновесных границах зерен значительно зависит от избыточного свободного объема, связанного с внесенными в границу дефектами. При малой плотности внесенных дефектов наблюдаются обычные значения $Q_b \sim 9 kT_m$. При высокой плотности дефектов избыточный свободный объем может стать таким значительным, что величина энергии активации зернограничной диффузии будет равной значению энергии активации дии диффузии в расплаве $Q_L \sim 3 kT_m$ [4]. Из этого следует, что данный параметр может быть переменным для различных условий деформирования (температуры и степени деформации).

В [2] приведено значение предэкспоненциального множителя коэффициента зернограничной диффузии ($D_{b0}^* = 10^{-8} \text{ м}^3/\text{c}$) и утверждается, что полученная величина носит оценочный характер. Для точного вычисления величины d_{\min} необходима подробная информация о значениях D_b^* и зависимости $D_b(\hat{\varepsilon}_v)$, а также сведения о величине локальной скорости деформации $\hat{\varepsilon}_v$. Откуда можно предположить, что значение D_{b0}^* меняется в широких пределах в зависимости от условий деформирования; k – постоянная Больцмана, равная 1,38·10⁻²³ Дж/К; A_1 – численный параметр, равный 10 [1]; ξ – коэффициент однородности пластической деформации, равный 10⁻⁴ [1].

Цель работы – экспериментальное и теоретическое исследование зависимости размера зерна легированных высокопрочных сталей аустенитного, бейнитного, мартенситно-стареющего классов от температуры и степени деформации при нестационарной интенсивной пластической деформации взрывом и построение модели, позволяющей рассчитывать величину предела диспергирования.

Результаты и их обсуждение. Модель диспергирования. В ее основе лежат теория неравновесных границ зерен [3, 4] и результаты экспериментальных и теоретических исследований структуры и свойств легированных сталей, подвергнутых интенсивной пластической деформации [5–9].

Процесс деформирования при обработке легированных сталей взрывом радикально отличается от стационарного процесса. Силовое воздействие на деформируемую заготовку реализуется в результате кратковременного и интенсивного силового импульса. Протекающие при этом процессы принципиально отличаются от стационарных. На макроуровне деформирование происходит с нарастающей скоростью. Значительная часть механической энергии переходит в тепло. Температура обработанной заготовки увеличивается на несколько десятков градусов. На микроуровне локальные разогревы могут быть более значительными. Вследствие динамических силовых воздействий возможна неоднородность упругой и пластической деформаций. Микроструктура легированных сталей представляет собой сложную гетерогенную смесь зерен различных фазового и химического составов.

Немонотонный характер деформирования металлов при обработке взрывом позволяет предположить, что в уравнении параметры D_{b0}^* и D_b^* , связанные с зернограничной диффузией, зависят от степени деформации, т. е. они будут рассматриваться как функции степени деформации ε . Физические механизмы, определяющие эти функции, изучены недостаточно. Поэтому будем исходить из некоторых эмпирических предположений.

Поскольку в нашем эксперименте изменялась не скорость, а степень деформации, то были предприняты попытки связать ее со структурой материала. Предположили, что при деформации

взрывом скорость деформации непостоянна, потому что она происходит под действием ударной волны (вызвана кратковременным воздействием большой силы). Следовательно, скорость деформации увеличивается во времени. Таким образом, чем больше степень деформации, тем выше ее скорость по окончании процесса. Исходя из этого приняли, что средняя скорость деформации пропорциональна степени деформации $\dot{\varepsilon}_{\nu} = c\dot{\varepsilon}$, а константа скорости *с* равна скорости звука в металле (скорость ударной волны взрыва) 6·10³ м/с.

В [2] утверждается, что для точного вычисления величины d_{\min} необходимы подробные сведения о значениях D_b^* и зависимости $D_b(\hat{\varepsilon}_v)$, а также о величине локальной скорости деформации $\hat{\varepsilon}_v$. Можно предположить, что значение D_{b0}^* меняется в широких пределах в зависимости от условий деформирования.

На основе кинематического уравнения фрагментации [9] в [3] выведена зависимость оценки накопленной тензорной плотности дислокаций от степени деформации, которая представлена экспоненциальной формулой вида $\beta_0 \exp(-\beta_1 \varepsilon) + \beta_2$. Указано, что численные оценки качественно совпадают с экспериментальными данными. Поэтому допустим, что зависимость коэффициента зернограничной диффузии от степени деформации может принимать вид

$$D_{b0}(\varepsilon) = \beta_0 [\beta_1 \exp(-\beta_2) + 1].$$
(3)

Как отмечено в [6], по мере накопления дефектов кристаллической структуры Q_b^* может меняться от $Q_b^* \sim 9kT_m$ до $Q_L^* \sim 3kT_m$, т. е. убывать. Для простоты примем, что в зависимости от степени деформации и связанного с ней накопления дефектов это убывание линейно:

$$Q_b(\varepsilon) = \beta_3 - \beta_4 \varepsilon, \tag{4}$$

где β, β₁, ..., β₅ – некоторые коэффициенты, которые могут быть подобраны эмпирическим путем на основе экспериментальных данных.

Исходя из вышесказанного, с учетом зависимости коэффициента зернограничной диффузии D_b от степени деформации ε_v и температуры формула (1) примет вид

$$d_{\min}(\varepsilon) = \left(\chi k \frac{\delta D_{b0}(\varepsilon) \exp\left(-Q_{b}(\varepsilon) \frac{T_{m}}{T}\right)}{A_{1}\xi c\varepsilon} \frac{\Omega}{kT}\right)^{\frac{1}{3,5}}.$$
(5)

Экспериментальные данные. Воздействие высокоскоростной деформации ($\varepsilon = 30-75\%$) на стали аустенитного класса исследовали на склонной к упрочнению при деформации экономнолегированной никелем стали 10Х12Г4Н4ЮМ, имеющей однофазную структуру аустенита. Поскольку структура стали в исходном состоянии представляет собой аустенит, упрочнение взрывом проводили без нагрева при 290 К. Результаты эксперимента приведены в табл. 1, фотографии микроструктур – на рисунке *а*, *б*, *в*.

Определено, что интенсивное измельчение стали 10Х12Г14Н4ЮМ под действием высокоскоростной пластической деформации взрывом происходит при степенях деформаций в диапазоне 20–40% и составляет в среднем 2–6 мкм относительно исходного зерна в 16–18 мкм. Затем процесс измельчения приостанавливается и при деформациях более 40–50% зерно незначительно увеличивается в размерах до 3–5 мкм. При степенях деформации более 50% происходит разрушение материала. Предел диспергирования стали 10Х12Г14Н4ЮМ соответствует степени деформации порядка 30%.

Для стали бейнитного класса 38ХН3МФА подобное экспериментальное исследование выполнено при трех различных температурах (290, 670, 1120 К), при которых сталь имеет структуру бейнита (α'-фаза) с ОЦК-решеткой (290, 670 К) и аустенита (γ-фаза) с ГЦК-решеткой (1120 К) (табл. 2, рисунок *г*, *д*, *е*).

Установлено, что эффект измельчения при деформировании стали 38ХН3МФА при 1120 К проявляется сильнее, чем при 290 и 670К. Зависимость размера зерна от степени деформации при данных температурах имеет аналогичный характер: измельчение до степеней деформации

Степень деформации $\overline{\epsilon}$	Участок измерения	Размер зерна, мкм	Степень деформации ह	Участок измерения	Размер зерна, мкм
	1	18,6		1	3,5
Без деформации	2	17,1		2	2,2
(исходное	3	15,8	0,49	3	1,8
состояние)	4	16,3		4	3,0
	5	14,5		5	1,5
		Средний 16,5			Средний 2,4
	1	16,8		1	2,6
	2	14,5		2	1,0
0,03	3	14,0	0,58	3	2,2
	4	13,8		4	1,2
	5	15,0		5	2,0
		Средний 14,8			Средний 1,8
0,19	1	8,3		1	3,3
	2	9,6		2	1,9
	3	7,8	0,70	3	1,5
	4	8,5		4	2,2
	5	9,2		5	2,1
		Средний 8,7			Средний 2,2
	1	6,9		1	3,5
	2	5,0		2	2,8
0,31	3	4,5	0,75	3	2,1
	4	4,1		4	1,9
	5	5,0		5	1,7
		Средний 5,1			Средний 2,4

Таблица 1. Экспериментальные данные зависимости размера зерна от степени деформации при 290К для стали аустенитного класса 10Х12Г14Н4ЮМ

 \mathcal{H} В 3 \mathcal{H} Микроструктуры сталей 10Х12Г14Н4ЮМ (*a*, *б*, *в* – температура деформирования 290 К), 38ХН3МФА (*г*, *д*, *е* – температура деформирования 1120 К), 03Н18К9М5ТЮ (\mathcal{H} , *з*, *u* – температура деформирования 1120 К) в зависимости от степени деформации: *a*, *б*, *в* – ε = 5–10%, 30–40%, 50–60% соответственно; *г*, \mathcal{H} – ε = 3–5%, *б*, *з* – ε = 20–30%; *е*, *u* – ε = 40–50%; ×1000

	X	Размер зерна стали З8ХНЗМФА, мкм				
Степень деформации є	Участок измерения	290 К	670 K	1120 К		
	1	19,5	20,1	20,0		
	2	15,9	18,3	19,5		
Без деформации	3	17,0	16,7	18,7		
(исходное состояние)	4	18,3	19,0	17,9		
	Участок измерения 290 К 1 19,5 2 15,9 3 17,0 4 18,3 5 15,6 CpedHuй 17, 1 16,8 2 17,0 3 14,6 4 13,9 5 15,0 CpedHuй 15, 1 13,7 2 10,8 3 9,5 4 12,4 5 10,7 Средний 15, 1 1 9,3 2 7,4 3 5,8 4 6,9 5 8,5 Средний 7,6 1 7,1 2 6,4 3 5,8 4 7,0 5 6,5 Средний 7,5 1 7,1 2 8,9 3 6,8 4 7	15,6	16,5	19,8		
		Средний 17,3	Средний 18,1	Средний 19,2		
	1	16,8	10,9	11,9		
	2	17,0	13,7	7,5		
0.01	3	14,6	11,0	7,0		
0,01	4	13,9	14,3	8,6		
	5	15,0	12,8	9,4		
		Средний 15,5	Средний 12,5	Средний 8,9		
	1	13,7	6,7	3,5		
	2	10,8	8,3	4,7		
0.05	3	9,5	10,2	5,4		
0,05	4	12,4	9,4	7,9		
Степень деформации те Без деформации исходное состояние) 0,01 0,05 0,19 0,25 0,37	5	10,7	11,0	6,7		
		Средний 11,4	Средний 9,1	Средний 5,6		
	1	9,3	5,8	1,9		
	2	7,4	6,3	3,7		
Степень деформации є Без деформации исходное состояние) 0,01 0,05 0,19 0,25 0,25 0,37	3	5,8	4,6	2,2		
0,19	4	6,9	3,2	3,3		
	5	290 К 19,5 15,9 17,0 18,3 15,6 Средний 17,3 16,8 17,0 14,6 13,9 15,0 Средний 15,5 С 13,7 10,8 9,5 12,4 10,7 Средний 15,5 С 13,7 10,8 9,5 12,4 10,7 Средний 11,4 0 9,3 7,4 5,8 6,9 8,5 Средний 7,6 Средний 7,6 7,9 6,4 5,8 7,0 6,5 Средний 7,7 6,9 7,3 Средний 7,9	4,7	2,9		
		Средний 7,6	Средний 4,9	Средний 2,8		
	1	7,9	2,2	3,5		
	2	6,4	4,7	3,2		
0.05	3	5,8	4,0	1,4		
0,25	4	7,0	3,5	1,3		
	5	6,5	5,1	2,0		
		Средний 6,7	Средний 3,9	Средний 2,3		
	1	7,1	3,8	3,0		
	2	8,9	2,6	1,9		
0.27	3	6,8	4,9	1,8		
0,37	4	7,6	4,3	2,5		
	5	7,9	2,1	1,4		
í T		Средний 7,7	Средний 3,5	Средний 2,1		
	1	9,1	4,6	2,9		
	2	8,6	3,8	1,8		
0.45	3	7,7	4,5	2,6		
0,45	4	6,9	2,9	3,0		
	5	7,3	3,3	2,3		
		Средний 7,9	Средний 3,8	Средний 2,5		

Таблица 2. Экспериментальные данные зависимости размера зерна от степени деформации при 290, 670, 1120 К для стали бейнитного класса 38ХНЗМФА

20–30%, отсутствие изменения размера при 30–40% и последующий рост зерна при степени деформации выше 40–50%.

Для стали мартенситно-стареющего класса 03Н18К9М5ТЮ представлены экспериментальные данные зависимости размера зерна от степени деформации при температурах 290 К – мартенсит (α'-фаза) с ОЦК-решеткой и 1120 К – аустенит (у-фаза) с ГЦК-решеткой (табл. 3, рисунок *ж, з, и*).

Исследовано, что эффект измельчения при деформировании мартенситно-стареющей стали 03H18K9M5TЮ в аустенитном состоянии при 1120 К проявляется сильнее, чем при 290 К. Измельчение происходит до степеней деформации 20–40% с последующим ростом зерна при степени деформации выше 40–50%. Увеличение степеней деформации более 50% вызывает разрушение материала. Предел диспергирования стали 03H18K9M5TЮ достигается при степенях деформации 20–30%.

	X7	Размер зерна стали 03Н18К9М5ТЮ, мкм			
Степень деформации є	участок измерения	290 К	1120 К		
	1	19,7	21,0		
	2	20,8	16,3		
Без деформации	3	17,9	17,9		
(исходное состояние)	4	21,5	18,7		
	5	18,9	19,5		
		Средний 19,8	Средний 18,7		
	1	11,8	4,9		
	2	13,6	6,7		
	3	12,9	8,2		
0,10	4	15,5	6,0		
	5	13,0	6,7		
		Средний 13,4	Средний 6,5		
	1	11.4	2,6		
	2	8,8	5,1		
0.20	3	10,3	4,3		
0,20	4	8,1	3.7		
	5	12,0	3,9		
		Средний 10,1	Средний 3,9		
	1	7,7	4,9		
F	2	9,0	2,0		
Γ	3	10,3	2,8		
0.20	4	7,8	2,5		
0,30	5	9,5	3,4		
[[Средний 8,9	Средний 3,1		
	1	8,4	1,8		
Γ	2	7,3	3,5		
0.40	3	10,1	4,2		
0,40	4	8,5	2,7		
	мации т мации т мации ()	9,7	2,3		
		Средний 8,8	Средний 2,9		
	1	7,1	2,1		
	2	9,5	4,2		
0.50	3	10,4	3,3		
0,50	4	11,2	3,6		
	5	8,0	5,0		
		Средний 9,2	Средний 3,6		
	1	8,7	3,9		
	2	9,0	4,3		
	3	9,8	2,6		
0,60	4	12,6	5,5		
	5	11,7	5,7		
		Средний 10,4	Средний 4,4		

Таблица 3. Экспериментальные данные зависимости размера зерна от степени деформации при 290, 1120 К для стали мартенситно-стареющего класса 03H18K9M5TЮ

Анализ экспериментальных данных зависимости размера зерна от степени деформации (табл. 1–3) показывает, что интенсивное измельчение высокопрочных сталей под действием высокоскоростной пластической деформации взрывом происходит при степенях деформации 20–30%. Затем существует диапазон деформаций 30–40%, в котором изменения размера зерна не происходит. При деформациях более 40–50% накопленная пластическая деформация, вызывающая дополнительный локальный разогрев материала, приводит к развитию рекристаллизационных процессов, в результате размеры зерна увеличиваются. При деформациях выше 50–60% в материалах возможно появление трещин.

Сопоставление с экспериментом. Сравнение результатов расчетов по формуле (1) с экспериментальными данными показывает удовлетворительное совпадение (отклонение не более 5%) при степенях деформации до 20–30%. Однако при использовании данной модели диспергирования при дефор-

мациях выше 30% расхождение становится значительным (более 15%), не учитывается физика процесса нестационарной интенсивной пластической деформации материала взрывом.

Введение поправочных коэффициентов, учитывающих зависимость коэффициента зернограничной диффузии D_b от степени деформации $\dot{\varepsilon}_v$ и температуры (5), позволяет получить сопоставимые результаты. Отклонение от экспериментальных данных составляет 3–5%. В табл. 4 приведены значения всех параметров, входящих в уравнение (5). Расчеты выполнены в программе Mathcad.

Таблица 4. Значения параметров, и	спользованных при расчетах	к зависимости размера	зерна от условий				
деформирования							

Марка стали	<i>Т</i> _{деф} . К	Структура	Вектор Бюргерса <i>b</i> , м	Предэкспоненциальный множитель коэффи- циента зернограничной диффузии, м ³ /c			Энергия активации зерногра- ничной диффузии Q_b	
				β ₀	β,	β_2	β ₃	β_4
10Х12Г14Н4ЮМ	290	ү-фаза ГЦК	2,58×10 ⁻¹⁰	2×10 ⁶	2×10 ⁴	-16	6	-1,4
38ХН3МФА	290	α'-фаза ОЦК	2,48×10 ⁻¹⁰	4×10 ⁵	40	-9	4,5	-1,6
	670	α'-фаза ОЦК	2,48×10 ⁻¹⁰	10 ³	15	-15	7,7	-1,4
	1120	ү-фаза, ГЦК	2,58×10 ⁻¹⁰	1	15	-15	9	-1
03Н18К9М5ТЮ	290	α'-фаза ОЦК	2,48×10 ⁻¹⁰	2×10 ⁶	20	-10	4,4	-1
	1120	ү-фаза, ГЦК	2,58×10 ⁻¹⁰	2×10 ⁵	53	-20	18	-5,8

П р и м е ч а н и е. G – модуль сдвига – 8,5·10⁴ МПа; v – коэффициент Пуассона – 0,25; $\sigma_{\rm т \, sepha}$ – предел текучести зерна – 450 МПа; k – постоянная Больцмана – 1,381·10⁻²³ кг·м²/(c²·K); Ω – атомный объем – 1,18·10⁻²⁹ м³; χ – геометрический коэффициент – 1; A – численный параметр – 10; ξ – коэффициент однородности пластической деформации – 10⁻⁴; c – коэффициент зависимости скорости деформации от степени деформации – 6·10³ м/с; T_m – температура плавления для стали 10Х12Г14Н4ЮМ – 1683 К, для сталей 38ХНЗМФА и 03Н18К9М5ТЮ – 1810 К.

Заключение. Проведены экспериментальное и теоретическое исследования зависимости размера зерна легированных высокопрочных сталей аустенитного, бейнитного, мартенситностареющего классов от температуры и степени деформации при нестационарной интенсивной пластической деформации взрывом.

Построена модель, позволяющая рассчитывать величину предела диспергирования, учитывающая зависимость коэффициента зернограничной диффузии D_b от степени деформации $\dot{\varepsilon}_v$ и температуры.

Расчеты и графики выполнены с использованием программы Mathcad. Получены сопоставимые с экспериментальными значениями данные. Отклонение составляет 3–5%.

Список использованных источников

1. Предел диспергирования при РКУ-деформации. Влияние температуры / В.Н. Чувильдеев [и др.] // Докл. РАН. – 2004. – Т. 396, № 3. – С. 332–338.

2. Чувильдеев, В. Н. Предел измельчения зерен при РКУ-деформации / В. Н. Чувильдеев, В. И. Копылов // Металлы. – 2004. – №1. – С. 22–35.

3. Утяшев, Ф. 3. Деформационные методы получения наноструктурированных материалов и возможности их использования в авиадвигателестроении / Ф. 3. Утяшев // Авиационно-космическая техника и технология. – 2009. – № 10 (67). – С. 7–11.

4. Соотношение Холла–Петча в нано- и микрокристаллических металлах, полученных методами интенсивного пластического деформирования / А. В. Нохрин [и др.] // Физика границ зерен в металлах, сплавах и керамиках // Вестник Нижегородского университета им. Н.И. Лобачевского. – 2010. – № 5(2). – С. 142–146.

5. Чувильдеев, В. Н. Неравновесные границы зерен в металлах. Теория и приложения / В. Н. Чувильдеев. – М.: Физматлит, 2004. – 304 с.

6. Чувильдеев, В. Н. Микромеханизм деформационно-стимулированной зернограничной самодиффузии / В. Н. Чувильдеев // Физика металлов и металловедение. – 1996. – Т. 81, № 5. – С. 5–13.

7. Нохрин, А. В. Экспериментальные и теоретические исследования эволюции структуры субмикрокристаллических металлов, полученных методом интенсивного пластического деформирования: дис. ... д-ра физ-мат. наук: 01.04.07 / А. В. Нохрин. – Н. Новгород, 2014. – 320 л.

8. Kaibysheb, O. A. Superplastisity: Microstructurial Refinement and Superplastic Roll Forming / O. A. Kaibysheb, F. Z. Utyashev // Futurepast. Arlington, VA22201 USA. – 2005. – P. 386.

9. Утяшев, Ф. 3. Современные методы интенсивной пластической деформации / Ф. 3. Утяшев. – Уфа: УГАТУ, 2008. – 313 с.

References

1. Chuvil'deev, V. N., Kopylov, V. I., Nokhrin, A. V., Makarov, I. M. and Lopatin, Yu. G. (2004), "Limit of dispersing at ECA-deformation. Influence of temperature", *Doklady Akademii Nauk* [Paper of RAN], vol. 396, no. 3, pp. 332–338.

2. Chuvil'deyev, V. N. and Kopylov, V. I. (2004), "Limit of grains crumbling at ECA-deformation", *Metally* [Metals], no. 1, pp. 22–35.

3. Utyashev F. Z. (2009), "Deformation methods of nanostructured materials production and possibilities of their utilization in air jet motors building", *Aviatsionno-kosmicheskaya tekhnika i tekhnologiya* [Aviation and space technics and technologie], no. 10 (67), pp. 7–11.

4. Nokhrin, A. V., Chuvil'deyev, V. N., Kopylov, V. I., Lopatin, Yu. G., Pirozhnikova, O. E., Sakharov, N. V., Piskunov, A. V. and Kozlova, N. A. (2010), "Correlation Hall – Petch in nano- and microcrystalline metals, produced by methods of intensive plastic deformation", *Fizika granits zeren v metallakh, splavakh i keramikakh. Vestnik Nizhegorodskogo universiteta im. N. I. Lobachevskogo* [Physics of grains limits in metals, alloys and ceramics. News of Nizny Novgorod University of N. I. Lobachevsky], no. 5(2), pp. 142–146.

5. Chuvil'deyev, V. N. (2004), *Neravnovesnye granitsy zeren v metallakh. Teoriya i prilozheniya* [Non-equilibrium limits of grains in metals. Theory and additions], Physmatlit, Moscow, RU.

6. Chuvil'deyev, V. N. (1996), "Micro mechanism of deformation-stimulated grain-limit self diffusion", *Fizika metallov i metallovedenie* [Physics of metals and metals science], vol. 81, no. 5, pp. 5–13.

7. Nokhrin, A. V. (2014), "Experimental and theoretical investigations of sub-microcristalline metals evolution produced by method of intensive plastic deformation", D. Sc. Thesis, Condensed Matter Physics, The Federal state autonomous educational institution of higher education "Nizhny Novgorod State University. Lobachevskii", N. Novgorod, RU.

8. Kaibysheb, O. A. and Utyashev, F. Z. (2005), "Superplastisity: Microstructurial Refinement and Superplastic Roll Forming", *Futurepast. Arlington*, VA22201 USA, p. 386.

9. Utyashev, F. Z. (2008), *Sovremennye metody intensivnoi plasticheskoi deformatsii* [Modern methods of intensive plastic deformation], USATU, Ufa, RU.

Информация об авторах

Ильющенко Александр Федорович – член-корреспондент, доктор технических наук, профессор, генеральный директор Государственного научно-производственного объединения порошковой металлургии (220005, г. Минск, ул. Платонова, 41, Беларусь). E-mail: alexil@mail. belpak. by

Фомихина Ирина Викторовна – кандидат технических наук, старший научный сотрудник, зав. лабораторией металлофизики. ГНУ «Институт порошковой металлургии» НАН Беларуси (220005, г. Минск, ул. Платонова, 41, Беларусь). E-mail: iscentr@tut.by или ivfom@ tut.by

Дечко Михаил Михайлович – кандидат технических наук, доцент кафедры «Основы научных исследований и проектирования». Белорусский аграрный технический университет (220023, г. Минск, пр. Независимости, 99, Беларусь). E-mail: mdechko@rambler.ru

Ковалевский Виктор Николаевич – доктор технических наук, профессор кафедры «Порошковая металлургия, композиционные материалы и покрытия». Белорусский национальный технический университет (220013, г. Минск, ул. Я. Коласа, 24, Беларусь). E-mail: vn.kovalevskii@gmail.com

Для цитирования

Ильющенко, А. Ф. Деформационное измельчение зерен микроструктуры легированных сталей при нестационарной интенсивной пластической деформации взрывом / А. Ф. Ильющенко, И. В. Фомихина, М. М. Дечко, В. Н. Ковалевский // Вес. Нац. акад.навук Беларусі. Сер. фіз.-тэхн. навук. – 2016. – № 4. – С. 7–15.

Information about the authors

Ilyushchenko Alexandr Fedorovich – Corresponding member Dr. Sc. (Engineering), Professor, General Director of State Scientific and Production Assotiation of Powder Metallurgy (SSPA PM) of the National Academy of Sciences of Belarus, (41, Platonov str. 220005, Minsk, Belarus). E-mail: alexil@mail.belpak. by

Fomikhina Irina Victorovna – Ph. D. (Engineering), Senior Scientific Researcher, Head of metallophysics laboratory of SSI "Powder Metallurgy Institute" of the National Academy of Sciences of Belarus (41, Platonov str. 220005, Minsk, Belarus). E-mail: iscentr@tut.by or ivfom@ tut.by

Dechko Mikhail Mihkailovich – Ph. D. (Engineering), Assistant Professor, the Department "Bases of scientific investigations and designing". Belarusian National Technical University (99, Nezavisimosti Ave., 220023, Minsk, Belarus). E-mail: mdechko@rambler.ru

Kovalevsky Viktor Nikolaevich – Dr.Sci. (Engineering), Professor of chair "Powder metallurgy, composite materials and coatings". Belarusian National Technical University (24, Ya.Kolas str. 220013, Minsk Belarus). E-mail: vn.kovalevskii@ gmail.com

For citation

Ilyuschenko A. Ph., Fomikhina I. V., Dechko M. M., Kovalevskij V. N. Deformational grain grinding of alloyed steels microstructure at non-stationary intense plastic deformation by explosion. *Proceedings of the National academy of sciences of Belarus, physical-technical series*, 2016, no. 4, pp. 7–15.