УДК 537.84:621.03

В. Г. БАШТОВОЙ, А. Г. РЕКС, АЛЬ-ДЖАИШ ТАХА МАЛИК МАНСУР

ВЛИЯНИЕ УЛЬТРАЗВУКА НА ДЕФОРМАЦИЮ И УСТОЙЧИВОСТЬ КАПЛИ МАГНИТНОЙ ЖИДКОСТИ

Белорусский национальный технический университет

(Поступила в редакцию 11.04.2014)

Как известно, воздействие магнитных полей на объемы магнитной жидкости со свободной поверхностью вызывает их деформацию и при определенных условиях приводит к топологической неустойчивости и распаду на части [1, 2]. Известно также, что акустическая волна, падающая на свободную поверхность магнитной жидкости и создающая на ней избыточное давление, также приводит к ее деформации [3]. В связи с этим представляет интерес рассмотрение совместного воздействия магнитных и акустических полей на такого рода объемы магнитной жидкости. Кроме академического интереса данная задача привлекает к себе внимание и с прикладной точки зрения, являясь важной при использовании капельных объемов магнитной жидкости в различного рода технических устройствах, например, в магнитожидкостных акустических контактах [4, 5], подвесах и виброзащитных системах [6, 7].

Настоящая работа посвящена выяснению влияния акустического поля на форму и устойчивость полуограниченной капли магнитной жидкости, лежащей на горизонтальной твердой поверхности, а также при одновременном воздействии перпендикулярного к поверхности однородного магнитного поля *H* и силы тяжести, обеспечивающей ускорение *g*. Геометрия задачи изображена на рис. 1.

В основу теоретического рассмотрения положена методика, использованная в [8].

Принимается, что капля магнитной жидкости имеет форму эллипсоида вращения с большой *а* и малой *b* полуосями. Угол смачивания капли твердой поверхности предполагается равным 90°. Магнитное поле внутри капли предполагается, как и внешнее поле, однородным с учетом размагничивающего фактора эллипсоида.

На основание капли магнитной жидкости сфокусирована звуковая волна, создающая локальное давление $P_{_{3B}}$, внешнее давление в окружающем каплю газе $P_{_{B}}$.

Определение формы капли магнитной жидкости. На поверхности капли в каждой точке имеют место капиллярный, а также магнитный скачки давления. Последний определяется квадратом нормальной к поверхности компоненты намагниченности жидкости M_n .

Таким образом, давление внутри капли в вершинах полуэллипсоида будет определяться следующим образом:

$$P^{a} = P_{\rm B} + \sigma \left(\frac{1}{R_{\rm I}^{a}} + \frac{1}{R_{\rm 2}^{a}}\right) - \frac{1}{2}\mu_{0}M^{2}, P^{b} = P_{\rm B} + \sigma \left(\frac{1}{R_{\rm I}^{b}} + \frac{1}{R_{\rm 2}^{b}}\right) + P_{\rm 3B}, \tag{1}$$

где σ – коэффициент поверхностного натяжения магнитной жидкости, R_1 , R_2 – главные радиусы кривизны капли в соответствующих точках, M = M(H) – намагниченность жидкости, μ_0 – магнитная проницаемость вакуума.

В вершине *а* магнитное поле направлено перпендикулярно поверхности капли и $M_n = M$, а в вершине *b* оно – касательно данной поверхности и $M_n = 0$ (рис. 1).

Рис. 1. Геометрия задачи

Пренебрегая неоднородностью магнитного поля внутри капли и принимая во внимание действие силы тяжести, давление в капле на уровне ее основания P_0 , с одной стороны, будет равно $P_0 = P^a + \rho ga$, с другой стороны, $P_0 = P^b$, т. е. $P_0 = P^a + \rho ga = P^b$.

Из этого с учетом соотношений (1) получается следующее условие равновесия капли:

$$\sigma\left(\frac{1}{R_1^a} + \frac{1}{R_2^a}\right) - \sigma\left(\frac{1}{R_1^b} + \frac{1}{R_2^b}\right) + \rho g a - \frac{1}{2}\mu_0 M^2 - P_{_{3B}} = 0.$$
(2)

Геометрические характеристики полуэллипсоида объема *V* связаны следующими соотношениями: $R_1^a = R_2^a = b^2 / a$, $R_1^b = a^2 / b$, $R_2^b = b$, $V = (2/3)\pi ab^2$.

С учетом этого условие (2) приобретает вид, определяющий соотношение между геометрическими параметрами капли в магнитном, гравитационном и акустическом полях:

$$\sigma\left(\frac{2a}{b^2} - \frac{b}{a^2} - \frac{1}{b}\right) + \rho g a - \frac{1}{2} \mu_0 M^2 - P_{_{3B}} = 0.$$
(3)

При достаточно большом удлинении капли, когда (*a/b*)>>1, соотношение (3) дает

$$\sigma \frac{2a}{b^2} + \rho g a - \frac{1}{2} \mu_0 M^2 - P_{_{3B}} = 0.$$
(4)

Поскольку в процессе деформации капли ее объем *V* остается постоянным, в качестве характерного размера можно принять радиус R_0 полусферической капли того же объема. Тогда $V = (2/3)\pi R_0^3$, $ab^2 = R_0^3$ и из формулы (4) получается следующее квадратное уравнение для большой полуоси капли магнитной жидкости:

$$a^{2} + \frac{\rho g R_{0}^{3}}{2\sigma} a - \frac{\mu_{0} M^{2} R_{0}^{3}}{4\sigma} - \frac{P_{3B} R_{0}^{3}}{2\sigma} = 0,$$

решение которого есть

$$\frac{a}{R_0} = -\frac{\rho g R_0^2}{4\sigma} + \sqrt{\left(\frac{\rho g R_0^2}{4\sigma}\right)^2 + \frac{\mu_0 M^2 R_0}{4\sigma} + \frac{P_{3B} R_0}{2\sigma}}.$$

Последнее выражение можно записать с использованием известных безразмерных критериев [1]: магнитного критерия $S = \mu_0 M^2 R_0 / \sigma$ и числа Бонда Во $= \rho g R_0^2 / \sigma$, а также акустического критерия $Ac = P_{_{3B}} R_0 / \sigma$, представляющего собой отношение звукового давления к капиллярному:

$$\frac{a}{R_0} = -\frac{Bo}{4} + \sqrt{\frac{Bo^2}{16} + \frac{S}{4} + \frac{Ac}{2}}.$$
(5)

Из выражения (5) видно, что акустическое поле, описываемое критерием *Ac*, способствует удлинению капли, увеличивая ее высоту *a* при неизменных значениях остальных параметров.

В больших магнитных полях, когда S >> Bo², а также когда Ac >> Bo², получается простое соотношение, определяющее удлинение капли с учетом действия как магнитного, так и гравитационного и акустического полей:

$$\frac{a}{R_0} = \sqrt{\frac{S}{4} + \frac{Ac}{2}} - \frac{\text{Bo}}{4}$$

Топологическая неустойчивость капли магнитной жидкости. Неустойчивость рассмотренной выше капли, приводящая к ее распаду примерно на две одинаковые капли, связана с тем, что при определенных значениях действующих на нее полей величина суммарной энергии двух капель становится меньше значения энергии исходной одиночной капли и это состояние является более энергетически выгодным [9]. Следуя [9], для сильно вытянутого полуэллипсоида вращения (a>>b) площадь боковой поверхности $S = (\pi^2 / 2)ab$, объем $V = (2\pi / 3)b^2a$, координата центра тяжести $a_{u,r} = (3 / 8)a$, площадь основания $S_{och}=\pi b^2$. Соответственно потенциальная энергия полуэллипсоида в поле силы тяжести $E_g = \rho V g a_{ur} = (3 / 8)\rho g V a$, поверхностная энергия $E_{nob} = \sigma S = (\pi^2 / 2)\sigma ab$.

Положим, что сосредоточенная в капле энергия $E_{_{3B}}$ акустического поля, сфокусированного на основании капли, пропорциональна площади основания капли $S_{_{0CH}}$, через которое она поступает в каплю: $E_{_{3B}} = q_{_{3B}}S_{_{0CH}}$. В этом случае величину $q_{_{3B}}$ (Дж/м²) можно рассматривать как поверхностную плотность акустической энергии.

В результате топологической неустойчивости исходная капля распадается на две капли. Если исходная капля обладает энергией E_1 , имеет объем $V_1 = V$, высоту a_1 , радиус основания b_1 , а каждая из двух капель, образовавшихся в результате топологической неустойчивости, характеризуется соответственно энергией E_2 , объемом $V_2 = V/2$, высотой a_2 , радиусом основания b_2 , то разность соответствующих видов энергии $\Delta E = E_1 - 2E_2$ одной капли и системы двух капель половинного объема будет определяться следующими соотношениями: для гравитационной энергии $\Delta E_g = (3 / 8)\rho gV(a_1 - a_2)$, для поверхностной энергии $\Delta E_{\sigma} = (\pi^2 / 2)\sigma(b_1a_1 - 2b_2a_2)$, для акустической энергии $\Delta E_{3B} = E_1 - 2E_2 = q_{3B}(S_1 - 2S_2) = q_{3B}\pi(b_1^2 - 2b_2^2)$.

Поскольку полуоси капель связаны между собой: $b_1 = \sqrt{3V/(2\pi a_1)}$, $b_2 = \sqrt{3V/(4\pi a_2)}$, то $\Delta E_{\sigma} = \sqrt{3\pi^3 V \sigma^2 / 8} (\sqrt{a_1} - \sqrt{2a_2})$, $\Delta E_{_{3B}} = (3q_{_{3B}}V/2)(a_1^{-1} - a_2^{-1})$.

Так как $a_1 > a_2$, видно, что распад капли приводит к увеличению акустической энергии системы ($\Delta E_{_{3B}} < 0$), т. е. акустическое поле повышает устойчивость капли, препятствуя ее распаду.

Условием, определяющим порог наступления топологической неустойчивости, будет равенство нулю суммы изменений данных энергий:

 $\Delta E_{\sigma} + \Delta E_{\sigma} + E_{_{3B}} = 0,$

или

$$\frac{3V}{8}(\rho g - \frac{4q_{3B}}{a_1 a_2})(a_1 - a_2) = \sqrt{3\pi^3 V \sigma^2 / 8}(\sqrt{2a_2} - \sqrt{a_1}).$$
(6)

При больших значениях магнитного числа *S* (*S*>>Bo², *S*>>*Ac*) выражение (5) дает следующую зависимость высоты капли от величины напряженности магнитного поля: $a = \sqrt{3V\mu_0 M^2} / (8\pi\sigma)$. Подставляя ее значение в формулу (6), получаем следующее условие наступления топологической неустойчивости рассматриваемой капли:

$$\rho g \sqrt[4]{\frac{\mu_0 M^2 V^3}{\sigma^5}} \left(1 - \frac{32\sqrt{2\pi}}{3} \frac{q_{3B}\sigma}{\rho g V \mu_0 M^2} \right) = \frac{8\pi^{7/4}}{(1 + \sqrt[4]{2})3^{3/4} 2^{1/4}} \approx 10.$$
(7)

Выражение (7) отличается от условия устойчивости [9] наличием второго слагаемого в скобках в его левой части, которое описывает влияние на порог устойчивости капли акустического поля.

Обобщая (7), как это сделано в [9], на случай произвольной осесимметричной капли высоты h и радиуса основания R, параметры которой можно описать обобщенными соотношениями (площадь боковой поверхности $S = \alpha ab$, объем $V = \beta b^2 a$, координата центра тяжести $h_{\text{ц.т}} = \gamma a$), получаем

$$\rho g \sqrt[4]{\frac{\mu_0 M^2 V^3}{\sigma^5}} \left(1 - \frac{32\sqrt{2\pi}}{3} \frac{q_{3B}\sigma}{\rho g V \mu_0 M^2} \right) = A, \quad A = \frac{\alpha}{\gamma \sqrt{\beta}} \frac{2}{(1 + \sqrt[4]{2})} \sqrt[4]{\frac{2\pi}{3}}.$$
(8)

Результаты расчета соответствующих коэффициентов для капель магнитной жидкости классической формы в виде уже рассмотренного полуэллипсоида вращения, а также кругового конуса и цилиндра содержатся в [9].

Наличие в левой части выражений (7), (8) множителя в скобках, определяемого плотностью поверхностной энергии акустического поля $q_{_{3B}}$, значение которого меньше единицы, приводит к тому, что при тех же объемах капли V неустойчивость будет наступать при более высоких

Рис. 2. Схема экспериментальной установки

значениях намагниченности жидкости *M*. Следовательно, для жидкости с данной намагниченностью распад капли магнитной жидкости будет иметь место при более высоких значениях объема капель. Это означает, что акустическое поле в рассматриваемом случае будет повышать устойчивость капель магнитной жидкости относительно их распада в однородном магнитном поле.

Экспериментальные исследования формы капли магнитной жидкости и ее устойчивость в магнитном, гравитационном и акустическом полях выполнены на установке, схема которой представлена на рис. 2. Основными ее элементами являются источники магнитного и акустического полей. Акустическое поле создается генератором электрических колебаний *I*, генерирующим колебания с частотой 1 МГц, напряжение которого подается на пьезоэлектрический преобразователь 2.

Вертикальное однородное магнитное поле создается катушками Гельмгольца 3. Пьезоэлектрический преобразователь заключен в немагнитный корпус и установлен на дне иммерсионной камеры 4, выполненной из прозрачного пластического материала. Последняя заполнена дистиллированной водой 5. В камеру 4 частично погружена кювета 6 с плоским дном, где формируется капля магнитной жидкости 7. Стенки кюветы 6 выполнены из прозрачного пластического материала. Высота положения кюветы относительно поверхности излучения регулируется с помощью вмонтированных в две противоположные стенки камеры винтовых подъемных механизмов.

В зависимости от условий эксперимента прохождение ультразвука осуществлялось непосредственно через дно кюветы *б* либо через звукопрозрачное окно *8*, выполненное из майларовой пленки и расположенное в окрестности фокальной зоны источника излучения ультразвуковых колебаний.

Контроль интенсивности акустических колебаний, воздействующих на каплю, осуществлялся с помощью пьезокерамического приемника 9 и измерительного прибора 10. Питание катушек Гельмгольца обеспечивалось источником постоянного тока 11. Индукция магнитного поля измерялась датчиком Холла 12 и миллитесламетром 13.

В экспериментах использовались магнитные жидкости на основе керосина и магнетита МК-52 и МК-72 со следующими физическими характеристиками: намагниченность насыщения 52,1 и 72,5 кА/м, плотность 1476 и 1650 кг/м³, коэффициент поверхностного натяжения 0,028 и 0,024 Н/м соответственно.

Объемы капель варьировались в пределах $V = (150-300) \text{ мм}^3$, что соответствовало их характерному радиусу $R_0 = \sqrt[3]{(3V/2\pi)} = (4,15-5,2) \text{ мм}$. Диапазон изменения напряженности магнитного поля составлял 0–30 кА/м, что отвечало пределу изменения намагниченности жидкости от нуля и практически до намагниченности насыщения.

Для оценки интенсивности звуковой волны измерялась высота *a* горба, возникающего на поверхности воды только под действием звукового давления $P_{_{3B}}$. В пренебрежении силами поверхностного натяжения из условия (2) $P_{_{3B}} = \rho ga$. В экспериментах данная высота достигала 3 мм, что соответствовало звуковому давлению до 30 Па. Если скорость звука в жидкости равна *C*, то интенсивность звука *I* (Вт/м²) определяется следующим образом: $I = P_{_{3B}}^2 / 2\rho C$, или $I = \rho g^2 a^2 / 2C$.

Рис. 3. Зависимость высоты капли магнитной жидкости МК-52 объема 131 мм³ от напряженности внешнего магнитного поля при воздействии на нее акустической волны (■) и без него (Δ)

Для воды C = 1500 м/с и определенная подобным образом интенсивность звука генератора могла варьироваться в пределах от 0 до $3 \cdot 10^{-4}$ Вт/м².

Представленные на рис. 3 результаты подтверждают, что акустическая волна увеличивает удлинение капли и соответствующая зависимость высоты капли от напряженности магнитного поля систематически располагается выше аналогичной зависимости в отсутствие звука.

На рис. 4 точками представлены экспериментальные данные по топологической неустойчивости капли магнитной жидкости при воздействии на нее акустической волны. Области слева от них соответствуют устойчивому состоянию капли заданного объема в магнитном поле соответствующей напряженности, а области справа – ее неустойчивому состоянию и распаду. Точки на нейтральных кривых определяют критические (пороговые) соотношения между объемом капли и напряженностью магнитного поля. Как видно из данных эксперимента, воздействие акустической волны на каплю магнитной жидкости сдвигает нейтральные кривые в области больших объемов и заметно повышает устойчивость капли, что находится в согласии с полученными выше теоретическими результатами. Если, например, в магнитном поле напряженностью 16 кА/м в обычных условиях неустойчивой является капля объема 200 мм³, то при воздействии акустической волны со звуковым давлением 60 Па она сохраняет устойчивость вплоть до 270 мм³. Эта же звуковая волна обеспечивает повышение критических значений напряженности магнитного поля для капли объема 230 мм³ от 12 до 22 кА/м.

Экспериментальные данные находятся в качественном соответствии с теоретическими результатами, описываемыми формулой (7), однако, количественное расхождение между ними довольно значительное. В большей степени это связано с тем, что при высоких значениях напряженности магнитного поля (непосредственно перед распадом капли), ее форма значительно

Рис. 4. Нейтральные кривые устойчивости капли магнитной жидкости МК-72 при воздействии на нее акустической волны и без него

отличается от эллипсоидальной и имеет сильно заостренную вершину. Лучшее количественное соответствие этих данных обеспечивает обобщенная формула (8) при определенном выборе значения числа A в ее левой части. На рис. 4 сплошными линиями представлены результаты расчетов по формуле (8) при A = 106 для разных значений поверхностной плотности акустической энергии $q_{3B} = 0$; 0,5; 1 Дж/м², которые находятся в хорошем согласии с экспериментальными данными.

Работа выполнена при поддержке Фонда фундаментальных исследований Республики Беларусь.

Литература

1. Bashtovoy V. G., Berkovsky B. M., Vislovich A. N. An Introduction to Thermomechanics of Magnetic Fluids. Washington, Hemisphere Publ. Corp., 1988.

2. Berkovsky B., Bashtovoi V. // IEEE Transactions on Magnetics. 1980. Vol. 16, N 2. P. 288-296.

3. Баштовой В. Г., Краков М. С., Рекс А. Г. // Магнитная гидродинамика. 1985. № 1. С. 19–24.

4. Баев А. Р., Коновалов Г. Е., Майоров А. Л. Магнитные жидкости в технической акустике и неразрушающем контроле. Мн., 1999.

5. Баев А. Р., Баштовой В. Г., Коновалов Г. Е. и др. Способ создания акустического контакта при ультразвуковых измерениях: А. с. СССР 697916, 1979.

6. Полунин В. М. Акустические свойства нанодисперсных магнитных жидкостей. М., 2012.

7. Magnetic Fluids and Applications Handbook. / B. Berkovsky, V. Bashtovoi, eds. New York: Begell House Inc. Publishers, 1996.

8. Баштовой В. Г., Погирницкая С. Г., Рекс А. Г. // Магнитная гидродинамика. 1990. № 2. С. 2–26.

9. Баштовой В. Г., Рекс А. Г., Аль-Джаиш Таха Малик Мансур // Весці НАН Беларусі. Сер. фіз.-тэхн. навук. 2013. № 4. С. 64–69.

V. G. BASHTOVOI, A. G. REKS, AL-JHAISH TAHA MALIK MANSUR

AN EFFECT OF ULTRASOUND ON DEFORMATION AND STABILITY OF MAGNETIC FLUID DROP

Summary

The influence of an ultrasonic wave on the form and topological instability of a magnetic fluid drop placed on a horizontal solid surface in an external homogeneous magnetic field is investigated theoretically and experimentally. It is shown, that ultrasonic influence can lead to lengthening of a drop and raising of its stability.