
28 Proceedings of the National Academy of Sciences of Belarus. Physical-technical series, 2021, vol. 66, no. 1, pp. 28–36 �

ISSN 1561-8358 (Print)
ISSN 2524-244X (Online)

МАТЕРИАЛОВЕДЕНИЕ, МЕТАЛЛУРГИЯ
MATERIALS ENGINEERING, METALLURGY

UDC 669.12+669.784:539.219.3 Received 07.12.2020
https://doi.org/10.29235/1561-8358-2021-66-1-28-36 Поступила в редакцию 07.12.2020

Serhii V. Bobyr

Iron and Steel Institute of Z. I. Nekrasov of the National Academy of Sciences of Ukraine, Dnipro, Ukraine

NON-EQUILIBRIUM THERMODYNAMICS MODEL FOR CALCULATING DIFFUSION 
FLUXES UNDER PHASE TRANSFORMATIONS IN ALLOY STEELS

Abstract. The phase transformations in alloyed iron-carbon alloys is largely related to diffusion of components, fore-
most to the carbon. For the analysis of diffusive processes in alloy steels, it is possible to use the mathematical methods of 
non-equilibrium thermodynamics. The equation for the diffusive fluxes of the system contains unknown in general case of 
coefficients activity of elements and vacancies, and their derivatives for to the concentrations, that extraordinarily makes it 
difficult being of values of cross coefficients. In the article a non-equilibrium thermodynamics methodology of calculation 
of diffusive fluxes at presence of two phases in alloy steels is described. It allows one to calculate both direct- and cross co-
efficients in the Onsager equations. Formulas for calculation of thermodynamics forces in the alloy steel – for iron, alloying 
element of substitution – chrome, of element of introduction – carbon and vacancies, are presented. Common expressions are 
suggested for calculation of cross-factors, motive forces and fluxes in the Onsager’s equations for a multicomponent ther-
modynamic system. The example of using the developed model to find changes in concentrations and diffusion fluxes over 
time is given. For the model system used, it was established that at the stage of predominant diffusion of carbon in the alloy 
steel, cementite inclusions with a size of about 18 nm are formed rather quickly (within ~ 200 s). The technique developed in 
the article allows one to perform diffusion kinetics calculations in multicomponent thermodynamic systems, which are also 
iron-carbon alloys and to control the size of the phases formed, for example, of carbide nanoparticles.
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НЕРАВНОВЕСНАЯ ТЕРМОДИНАМИЧЕСКАЯ МОДЕЛЬ ДЛЯ РАСЧЕТА ДИФФУЗИОННЫХ ПОТОКОВ 
ПРИ ФАЗОВЫХ ПРЕВРАЩЕНИЯХ В ЛЕГИРОВАННЫХ СТАЛЯХ

Аннотация. Фазовые превращения в легированных сплавах железа с углеродом в значительной степени связа-
ны с диффузией компонентов, в первую очередь с углеродом. Для анализа диффузионных процессов в легированных 
сталях можно использовать математические методы неравновесной термодинамики. Уравнения для диффузионных 
потоков системы содержит неизвестные в общем случае коэффициенты активности элементов и вакансий и их про-
изводные по концентрациям, что чрезвычайно затрудняет определение значений перекрестных коэффициентов. 
В статье разработана неравновесная термодинамическая методика расчета диффузионных потоков при наличии 
двух фаз в легированных сталях. Она позволяет рассчитать в уравнениях Онзагера как прямые, так и перекрестные 
коэффициенты. Приведены формулы расчета термодинамических сил для легированной стали – железа, легирую-
щего элемента замещения – хрома, элемента введения – углерода и вакансий. Предложены общие выражения для 
расчета перекрестных коэффициентов, движущих сил и потоков в уравнениях Онзагера для многокомпонентной 
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термодинамической системы. Приведен пример использования разработанной модели для поиска изменений кон-
центраций и диффузионных потоков во времени. Для используемой модельной системы установлено, что на стадии 
преимущественной диффузии углерода в легированной стали включения цементита размером около 18 нм образу-
ются довольно быстро (в течение ~ 200 с). Разработанная в статье методика позволяет проводить расчеты диффузи-
онной кинетики в многокомпонентных термодинамических системах, которыми также являются сплавы железо-у-
глерод, и контролировать размер образующихся фаз, например наночастиц карбидов.

Ключевые слова: неравновесная термодинамика, фазовые превращения, диффузионные потоки, движущие 
силы, перекрестные коэффициенты, легированные стали, наночастицы
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Introduction. The phase transformations in the alloyed iron-carbon alloys is largely related to dif-
fusion of components, foremost to the carbon [1, 2]. For the analysis of diffusive processes in alloy 
steels [3–5] it is possible to use the mathematical methods of non-equilibrium thermodynamics. In gen-
eral case, thermodynamics equations of motion look like [3]:

 Ji = 
1

N
ik k

k
L X

=
∑ (i = 1,.., N), (1)

where Ji are fluxes; Xk is thermodynamics forces; Lik = Lki is kinetic Onsager’s coefficients [5]; i, k are 
numbers of charges (substrate of transfer). Basic motive forces of the phase transformations in non-
equilibrium thermodynamics are gradients of chemical potentials μi for components of the system [3–5]:

 iXi = −∇μ . (2)

The theory of diffusion in metallic alloys with the vacancy mechanism of migration of atoms was 
developed by Darken [6]. Basic limitations of this theory are related to the necessity of diagonal matrix 
of Onsager and condition of equilibrium of concentration of vacancies [7]. In work [8] the considered 
kinetics of diffusion is in the bimetallic system, taking into account the non-diagonal coefficients of 
Onsager’s matrix. Thermodynamics potentials in this work are presented in a kind:

 0 ln( )i i i iRT cμ = μ = γ , (3)

where сі – concentration of element i; γі – coefficient of activity of element i, what is considered as 
dependency upon one concentration of сі. 

Equation for the diffusive fluxes of the system contains coefficients of activity of elements and 
vacancies, unknown in general case, and their derivatives for the concentrations, that extraordinarily 
makes it a difficult being of values of lines and cross coefficients. In work [8] expressions of cross coef-
ficients are found for an ideal solid solution.

Using this method for calculation of fluxes at presence of formation of phases in the system is a very 
difficult task. Therefore, at consideration of the interrupted systems, I mean systems, that contain a few 
phases, the fluxes of elements and vacancies pass between that as thermodynamics forces, it is possible 
to use the eventual finite differences of chemical potentials (–∆μi) [9, 10]. If, for example, we use two 
sizes – concentrations of carbon and iron, as degrees of process of graphitization, concordantly (1), 
equations of motion look like:

 1 11 1 12 2 ,J L X L X= +  (4.1)

 2 21 1 22 2 ,J L X L X= +  (4.2)

where J1 is a flux of carbon that characterizes speed of process of graphitization; J2 is a flux of iron; 
Х1 = (–∆μFe), Х2 = (–∆μС) are thermodynamics forces of iron and carbon. The finite difference of 
potential between two phases has a sign “+” at its increase, and the flux is directed towards the reduction 
of potential, so the expression for the forces has a sign “–”.

In works [10, 11] it is shown that in the complex process with two fluxes of charges, an increase of 
one potential takes place, which means one process “conducts”, and the other is a “derivative”. The “de-
rivative” process itself, which is separated from the “leading”, is impossible, since thermodynamically it 
is not expedient.
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In the system of equations (2) thermodynamics force (–∆μFe) is negative and it slows down the pro-
cess overall. The diffusion of iron is induced in a process, and diffusion of carbon is leading.

Thus, process of formation of phase (to the carbide, intermetallic) in the triple system Fe–C–X (al-
loying element), by analogy with the process of graphitization [10, 12], must be accompanied by the in-
tensive enough transfer of solid solution (alloyed iron). That provides the possibility of growing a phase 
with a lower density – carbide or intermetallic in it. This condition can be executed as a result of iron 
flux growing due to cross kinetic coefficient of L21 [10].

At presence of alloying element in the triple system, for example, chrome, the equation of motion 
must contain additional components that characterize diffusion of this element [13]. 

The non-equilibrium thermodynamic theory of multicomponent systems continues to develop success-
fully, see, for example [14, 15]. However, obtaining direct kinetic equations for the concentrations and flux-
es of system elements is difficult, because of unknown values of cross coefficients. Therefore, the problem 
of successive theoretical description of diffusive phase-to-phase fluxes in the alloy steels remains.

The aim of work is development of non-equilibrium thermodynamics methodology of calculation over 
time of diffusive fluxes, kinetic coefficients and thermodynamics forces in the multicomponent alloy steels.

Formulation of the problem and basic ratios. Will consider the process of phase formation in the 
alloy steel. From the point of view of thermodynamics such a process is a transition from metastable to 
the stable state with formation of a new phase K. We take into account that in the system Fe–C–X (alloy-
ing element) there are two phases – alloyed α-phase (F) and formed phase (K), the fluxes of carbon (JC), 
iron (JFe), alloying element (JX) and vacancies (JV) (Figure 1). The flux of vacancies in a formed phase 
will be considered equal to the flux of vacancies in a ferrite. 

Let us consider that the volume of the system can change in general case, which is the reason that the 
condition of complete equality of streams to 0 is not executed:

 JFe + JХ + JС + JV ≠ 0. 

Fig. 1. Scheme of the phase formation (K – carbide) in the alloy steel

According to (1), the thermodynamic equations for the fluxes take the form:

 Fe 11 Fe 12 C 13 14 ,X VJ L L L L= − ∆μ − ∆μ − ∆μ − ∆μ  (5.1)

 C 21 Fe 22 C 23 24 ,X VJ L L L L= − ∆μ − ∆μ − ∆μ − ∆μ  (5.2)

 31 Fe 32 C 33 34 ,X X VJ L L L L= − ∆μ − ∆μ − ∆μ − ∆μ  (5.3)

 41 42 C 43 44 ,V V X VJ L L L L= − ∆μ − ∆μ − ∆μ − ∆μ  (5.4)

where JFe, JС, JX, JV – fluxes of iron, carbon, alloying element and vacancies accordingly. O the base of 
generals of non-equilibrium thermodynamics, it is possible to find the value of kinetic coefficients, the 
same as it was executed in process [13]. In the conditions of complete equilibrium

 ∆μFe = 0, ∆μС = 0, ∆μX = 0 and ∆μV = 0. 
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However, for the linear thermodynamics system there is also a possibility of dynamic equilibrium, 
at that all fluxes are equal 0, but some thermodynamics forces in the system do not equal to zero (there 
are their variations) [4, 13]. For the first time such an opportunity is considered by the author in the 
work [12] for the double system, and then for the triple system [13]. Will consider this possibility for the 
4-component thermodynamics system. From equations (5) follows, that near-by an equilibrium, at pres-
ence of variations of thermodynamics forces, next terms must be executed:

 Fe 11 Fe 12 C 13 Cr 140 0,VJ L L L L= ⇒ δμ + δμ + δμ + δμ =  (6.1)

 C 21 Fe 22 C 23 240 0,X VJ L L L L= ⇒ δμ + δμ + δμ + δμ =  (6.2)

 31 Fe 32 C 33 340 0,X X VJ L L L L= ⇒ δμ + δμ + δμ + δμ =  (6.3)

 41 Fe 42 C 43 440 0,V X VJ L L L L= ⇒ δμ + δμ + δμ + δμ =  (6.4)

where the variations of thermodynamics forces that provide the dynamic equilibrium of the system are 
marked by an index δμі.

From the first equalization (6.1) we establish a connection between variations of forces:

 Fe 12 11 C 13 11 14 11( / ) ( / ) ( / ) .X VL L L L L Lδμ = − δμ − δμ − δμ  (7.1)

Substituting (7.1) into equations (6.2)–(6.4), we find:

 C 22 21 12 11 C 23 21 13 11 Cr 24 21 14 11( / ) ( / ) ( / ) 0,VJ L L L L L L L L L L L L= − δμ + − δμ + − δμ =  (7.2)

 32 31 12 11 C 33 31 13 11 Cr 34 31 14 11( / ) ( / ) ( / ) 0,X VJ L L L L L L L L L L L L= − δμ + − δμ + − δμ =  (7.3)

 42 41 12 11 C 43 41 13 11 Cr 44 41 14 11( / ) ( / ) ( / ) 0.V VJ L L L L L L L L L L L L= − δμ + − δμ + − δμ =  (7.4)

At arbitrary variations δμС, δμX and δμV the linear system of equations (7.2)–(7.4) is commensurate, 
if coefficients at δμС, δμX and δμV equal 0, from what it is possible to find the partial decision of the 
system of equations (6) and (7). For the diagonal components of the system of equations (7.2)–(7.4) it is 
possible to write down:
 ,ik ki ii kkL L L L=  i, k = 1…4. 

Taking into account Onsager’s ratio, we find connection between kinetic coefficients:

 ,ik ki ii kkL L L L= = ±  i, k = 1…4 (8)

The sign in front of the root is selected, based on the sign (direction) of the considered fluxes (see 
Figure 1). It is possible to insure a simple substitution, that undiagonal components of system of equa-
tions (7.2)–(7.4) also transform in 0. If we choose the sign of “–” for one of cross kinetic coefficients, 
then signs of other cross coefficients must be consistent. We found that a partial solution system of equa-
tions (6) is the same with unknown cross coefficients. Partial solution (8) of the linear 4-component sys-
tem of equations (7) it is possible to generalize the component of linear thermodynamics system on N, so 
as a system of equations (7) has the same kind for the number of components of n = 2, 3, 4, N. Therefore, 
the correlation (8) for cross kinetic coefficients is executed at the number of components of n = 2, N.

Such approach allows finding cross coefficients in Onsager’s equations since direct kinetic coeffi-
cients are expected. Thus, the equation (8) is correct for the systems, not too distant from an equilibri-
um, and for the real system, it is approximate.

General expressions for thermodynamics forces that operate in the system. We shall find gener-
al expressions for thermodynamics forces that operate in our system. For an example we will use steel of 
the system Fe–C–Cr with 0.15 % С and 5.0 % Cr, that is tempered and annealed at 600 °С with forma-
tion of the alloyed carbide [13]. Consider that first there is a chrome with the concentration СCr = 0.05, 
carbon with the concentration of СC = 0.007, concentration of iron egale СFe = 0.943 in solid α-solution 
of this steel. After annealing during two hours concentration of iron in a solid α-solution rises to С′Fe = 
0.9574, the concentration of chrome goes down to С′Cr = 0.0425. In the carbide of cementite there are 
chrome with mass part ~ 20 % (by the concentration of Cr

KC  = 0.20) and carbon with the concentration 
of C

KC  = 0.25, concentration of iron in the carbide Fe
KC′  = 0,55. Concentration of vacancies Cv in a solid 

α-solution, is equal to 10–4.
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Thermodynamics force for a carbon can be written by the formula [16]

 C

C
ln ,

K

C
aRT
aα

−∆μ = −  (9)

where R – universal gas constant, Т – a temperature of alloy, C
Ka  is a size of thermodynamics activity of 

carbon in cementite, Caα is a size of thermodynamics activity of carbon in α-solution. 
Variation of thermodynamics activity of carbon in an alloy at melting its component is possible to 

find on methodology [16, 17] from equation:

 
0C Cln( / ) ,i ia a N= β  (10)

where 
0Ca  is thermodynamics activity of carbon for an alloy in the standard state, βi is a coefficient of 

influence of element on thermodynamics activity of carbon in an alloy, Ni is content of element in an 
alloy in atomic parts. We will consider that for our steel in the standard state 

0 0 0C C C ,Ka a aα = =  we mean 
cementite in steel with 0.15 % С is stable and is in an equilibrium with a solid solution at an endurance 
temperature 600 °С [10]. Using this condition and equation (9) and (10), find:

 ( )C C Cr Cr Cr Crln / – .K K Ka a N Nα α α= β β  (11)

The value of βi is calculated by the coefficient of the phase distribution of the alloying element Ki = 
Ni(K)/Ni(α) and the atomic particle of carbon in the NC alloy in the general form [16, 17]:

 C C

C C C

( 1) ( ( ) ( )) .
( 1) ( ( ) ( ))

i i
i

i i

K N K K N
K N N K K N

− + − α
β = −

− + − α
 (12)

With a small error for low-alloy alloys it is possible to accept NC(K) = 0.25, content of carbon in 
α-phase of steel, taken for the diagram of the state of Fe–C NC(α) ≈ 0.001. Using the coefficient KCr of 
distribution of chrome between α-phase and the carbide, equal 4, we can find equation for the calcula-
tion of coefficients of influence βCr:

 βСr = –3.246/(3.0NC + 0.246), (13)

where Cr
αβ  = –12.16; Cr

Kβ  = –3.26.
Then from the expressions (9), (10) and (11) we can find values:

 ( )C Cln /Ka aα  = –0.6085 + 0.652 = 0.0425 and –∆μС = 308.47 J. (14)

The work, executed at diffusion of carbon from α-phase in a carbide, is positive. The difference of 
thermodynamics potentials at diffusion of alloying element from solid α- solution in the carbide can be 
estimated after a formula

 ln ,X
X

X

aRT
a
′

−∆μ = −  (15)

where aX is a size of thermodynamics activity of alloying element in solid α- solution before the beginning 
of the process, that equals its concentration of XCα  approximately; Xa′  is a size of thermodynamics activity 
of alloying element in solid α-solution after completion of the process, that equals its concentration of

XC α′  approximately. If an alloying element in our system is a chrome, then aCr = ССr and Cr Cr .a C′ ′=  
The difference of thermodynamics potentials at diffusion of chrome from solid α-solution in a carbide 
can be found by the formula:

 Cr
Cr

Cr

0.0425ln 725 .1180 8ln
0.0

J
5

aRT
a
′

−∆μ = − = − =  (16)

In work [13], the difference of thermodynamics potentials was expected for chromium after its activ-
ity at a carbide. The same value of thermodynamics force was got, as well as it is expected after a formu-
la (16). For diffusion of iron, the difference of thermodynamics potentials can be expected from data of 
change to the concentration of iron from the initial concentration of СFe (0.943) to the final concentration 
of FeC′  (stable state) [10]. From experimental data and thermodynamics of process it is known that dif-
fusion of carbon conducts, diffusion of chrome accompanies diffusion of carbon, and diffusion of iron 
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forces, directed towards an increase in iron concentration in ferrite of steel [10]. A final concentration of 
FeC′  is concentration of iron in steel on completion of process of formation of phase. Then the difference 

of thermodynamics potentials for iron can be found by a formula:

 Fe
Fe

Fe

0.9574ln 7,258 .116.7ln
0. 3

 
94

JCRT
C
′

− −∆μ = − = − =  (17)

And, in the end, for the difference of thermodynamics potentials of vacancies there also a formula, 
similar to (17) [18]:

 ln ,V
V

V

CRT
C
′

−∆μ = −  (18)

where VC′  is an unknown value of concentration of vacancies for completion of process. In process [12] 
it values for the process of graphitization are found from additional physical suppositions for the process 
of diffusion of vacancies – its stationary or equilibrium thermodynamic forces. The value of thermo-
dynamics force for vacancies in our case will be expected below from additional physical supposition 
about invariability of volume of alloy on the initial stage.

General expressions for kinetic coefficients and fluxes. Taking into account the obtained correla-
tions, one can find the value of kinetic coefficients in Onsager’s equations. As known from [8, 19], direct 
kinetic coefficients of Lii are related to the diffusion coefficients Di by correlation:

 Lii = СiDi/RT, (19)

where С1 is a concentration of iron in an alloy (0.943); С2 is a concentration of carbon in an alloy (0.007); 
С3 is a concentration of chrome in an alloy (0.05). 

Dependencies of coefficients of diffusion of chrome and carbon in the ferrit, alloyed by a chrome, 
from a temperature look like [19]: 

 4 2
Fe

251,0002.910 exp cm /s,D
RT

α − − =   
 (20.1)

 2
C

88,2300.177exp cm /s,D
RT

α − =   
 (20.2)

 2
Cr

358,0003.05exp cm /s.D
RT

α − =   
 (20.3)

At a temperature of 600 °C:

 –19 2 –6 2 –21 2
1 Fe 2 C 3 Cr3.03 10  cm /s; 1.02 10  cm /s; 1.38 10  cm /s.D D D D D Dα α α= ≈ ⋅ = ≈ ⋅ = ≈ ⋅

The value of direct kinetic coefficient for vacancies with the sufficient degree of accuracy can be 
found based on the next considerations. We’ll consider fluxes in α-phase in ideal case – to formation of 
additional phase and their cooperation. The volume of the system here is unchanging, which is why for 
fluxes in α-phase the equation is correct:

 JFe + JCr + JV = 0. (21)

So as equation (21) is correct at the arbitrary values of thermodynamics forces of iron and chrome, 
then the ratio can be obtained by direct coefficients:

 L44 = –L11sign(–∆μFe) – L33sign(–∆μCr), (22)

where sign of (–∆μFe) and sign of (–∆μCr) are signs of corresponding thermodynamic forces.
Using correlation (8), (19) and (22), we can find the expressions of cross kinetic coefficients for 

our system:

 ,i i k k
ik ki

C D C D
L L

RT
⋅

= = ±  (23) 

where the concentrations of the elements Сi and the Onsager coefficients change in time.
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Using correlation (19), (22) and (23), the calculated valus of kinetic coefficients for our system at the 
initial moment of time are: 

 L11 = 0.394 · 10–22; L22 = 0.984 · 10–13; L12 = –1,97 · 10–17, L33 = 0.95 · 10–26; L13 = –0.611 · 10–24, 

 L23 = 0.306 · 10–19, L44 = 0.393 · 10–22, L14 = –0.3935 · 10–22; L24 = 1.97 · 10–17; L34 = 0.611 · 10–24. 

Equation (21) allows us to find the value of thermodynamics force for vacancies, if thermodynamics 
forces of iron (17) and alloying element are known (16). The simple substitution of values of thermody-
namics forces and kinetic coefficients:

 –∆μV = (–L11(–∆μFe) – L33(–∆μCr))/L44 = 116.71 J. (24)

The value of thermodynamics force for vacancies almost equals the value of thermodynamics force 
of iron with the sign of “–”, because contribution of chrome is a few orders below, than compatible diffu-
sion of iron. Thus, the system of equations (5) can be obtained:

   22 17 24 22
Fe Fe C Cr0.394 10 ( ) 1.97 10 ( ) 0.611 10 ( ) 0.3935 10 ( ),VJ − − − −= ⋅ −∆μ − ⋅ −∆μ − ⋅ −∆μ − ⋅ −∆μ  (25.1)

  17 13 19 17
C Fe C Cr1.97 10 ( ) 0.984 10 ( ) 0.306 10 ( ) 1.97 10 ( ),VJ − − − −= − ⋅ −∆μ + ⋅ −∆μ + ⋅ −∆μ + ⋅ −∆μ  (25.2)

  24 19 26 24
Cr Fe C Cr0.611 10 ( ) 0.306 10 ( ) 0.95 10 ( ) 0.611 10 ( ),VJ − − − −= − ⋅ −∆μ + ⋅ −∆μ + ⋅ −∆μ + ⋅ −∆μ  (25.3)

 22 17 24 22
Fe C Cr0.3935 10 ( ) 1.97 10 ( ) 0.611 10 ( ) 0.393 10 ( ).V VJ − − − −= − ⋅ −∆μ + ⋅ −∆μ + ⋅ −∆μ + ⋅ −∆μ  (25.4)

In equations (25) well-known values of all thermodynamics forces that operate in the system are 
presented. From the system of equations (25) follows, that the values of fluxes of iron, chrome and va-
cancies substantially grow through the large values of cross coefficients of L12, L32, L42 and considerable 
size of thermodynamics force (–∆μС). Size of carbon flux, that has a positive sign, determined, mainly, 
by the own coefficient of L22. Direct calculations allow us to find the value of diffusive fluxes on the ini-
tial stage of formation of additional phase at the initial moment of time:

 JFe = –6.08 · 10–15 cm2/s; JC = 3.04 · 10–11 cm2/s; JCr = 0.94 · 10–17 cm2/s; JV = 6.07 · 10–15 cm2/s. 

As possible to see, in the case of cooperation of fluxes, equation (21) is also true. So as a flux of 
chrome has a considerably less value, than flux of iron, then the flux of vacancies has the same value as 
flux of iron practically, with the sign of “–”.

Kinetic equations for calculation of concentration and fluxes in the system. As already shown, 
the proposed equations for the calculation of diffusion fluxes depend on the concentrations of alloying 
elements, and those, in turn, vary over time. For a complete calculation of the kinetics of a multiphase 
thermodynamic system, a system of first-order differential equations should be used, in the form of con-
tinuity equations for each element of the system under consideration [19]:

 1
1

K J S
t

∂
=

∂
,…,

 i
i

K J S
t

∂
=

∂
,…, (26)

 N
N

K J S
t

∂
=

∂
, i=1,…,N.

where Ki is the amount of each element in the system (dKi = dCi∆V).
The system of differential equations (26) allows us to find the change in concentrations and fluxes of 

a multicomponent system over time. For the particular case of our system represented by fluxes (25), the 
following relations and simplifications can be introduced at the stage of determining carbon diffusion. 

At the stage of carbon diffusion, which has a very high diffusion coefficient, the thermodynamic 
force for carbon will be decisive. 

Its expression can be found from relations (9) and (13):

 
( ) Cr

C Cr Cr Cr Cr
C

3.246–0.652 .
3 0.246

K K CRT N N RT
C

α α  
−∆μ = − β −β = − + + 

 (27)
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Thermodynamic force (27) is the difference of thermodynamic potentials for carbon in α-phase 
and carbide. For calculations using the system of equations (26), we must calculate the flux expressed 
through the gradient of the thermodynamic potential:

 C
C ,

a
∆μ

−∇μ = −  (28)

where a is the distance that carbon diffuses. Usually, this distance is assumed to be equal to the interpla-
nar distance between the atoms in the alloy (a ~ 3 · 10–8 cm) [19]. 

The expressions for the carbon and chromium fluxes at this stage in the first approach are:

 C C C C( ) / ,J C D RTα= −∇μ  (29.1)

 C C C Cr Cr
Cr

( )
.

C D C D
J

RT

α α−∇μ ⋅
=  (29.2)

Also, in the expressions for the fluxes, we used element concentrations expressed in atomic or vol-
ume fractions, because of which the dimension of the flux previously had the dimension of diffusion 
coefficients cm2/s and in expression (29) it had the dimension cm/s. To recalculate fluxes to commonly 
used units (mol/cm2 · s) [15], flows should be multiplied by a constant conversion factor:

 0
2

mol ,
cm si i

i
J J

N
ρ  =  ⋅ 

 (30)

where Ni is the atomic number of the diffusing element (g · mol–1); ρ is the alloy density (g · cm–3).
Numerical simulation of the system allows you to find the change in diffusion fluxes and concen-

trations of elements over time. Calculations were carried out per unit area of 1 cm2 and unit volume of 
steel 1 cm3. The obtained dependencies are shown in Figure 2 and Figure 3. The size calculations of the 
formed carbides were carried out according to the method described in [13].

The established dependencies and the performed calculations show that at the initial stage the mag-
nitude of the diffusion flux of chromium substantially depends on the thermodynamic force for carbon 
(see Figure 2). Carbon is very quickly removed from a solid solution of alloy steel, leading to the forma-
tion of cementite-type nanoparticles with a size of about 18 nm (see Figure 3).

Figure 2. Estimated time-dependent changes in the fluxes of Cr and C (mol/cm2 · s)

Figure 3. Estimated time-dependent changes of carbon concentration in α-phase and carbides size
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Conclusions. The non-equilibrium thermodynamics methodology of calculation of diffusive fluxes 
is offered at presence of two phases in alloy steels. That allows expecting both line- and cross coeffi-
cients in equations. Formulas for calculation of thermodynamics forces are presented for alloy steel – 
for iron, alloying element of substitution – chrome, for element of introduction – carbon and vacan-
cies. Common expressions are suggested for calculation of cross-factors, motive forces and fluxes in the 
Onsager’s equations for a multicomponent thermodynamic system. 

The examples of using the developed method to find changes in concentrations and diffusion flu-
xes over time are given. For the model system used, it was established that at the stage of predominant 
diffusion of carbon in the alloy steel, cementite inclusions with a size of about 18 nm are formed rather 
quickly (within ~ 200 s). 

The technique developed in the article allows one to perform diffusion kinetics calculations in mul-
ticomponent thermodynamic systems, which are also iron-carbon alloys and to control the size of the 
phases formed, for example, carbide nanoparticles.
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