ISSN 1561-8358 (Print) ISSN 2524-244X (Online)

ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ И СИСТЕМЫ

INFORMATION TECHNOLOGIES AND SYSTEMS

УДК 004.056.55 https://doi.org/10.29235/1561-8358-2021-66-1-110-116 Поступила в редакцию 25.03.2020 Received 25.03.2020

В. А. Липницкий, С. И. Семёнов

Военная академия Республики Беларусь, Минск, Республика Беларусь

КОРРЕКЦИЯ ОШИБОК В КОДАХ РИДА-СОЛОМОНА С ПОМОЩЬЮ ИХ АВТОМОРФИЗМОВ

Аннотация. Исследованы синдромные инварианты АГ-группы автоморфизмов кодов Рида—Соломона (РС-кодах) — совместной группы аффинных и циклических подстановок. Найденные реальные инварианты представляют собой совокупность норм N Г-орбит, составляющих ту или иную АГ-орбиту. Нормы Г-орбит, как известно, являются векторами с C_{8-1}^2 координатами из поля Галуа — поля задания РС-кода, которые определяются всевозможными парами компонент синдромов ошибок. В таком виде инварианты АГ-орбит оказались громоздкими и тяжеловесными в обращении. Поэтому предложена компромиссная их замена на условные, частичные инварианты. Эти квази-инварианты получили название норм-проекций. Норма-проекция однозначно идентифицирует свою АГ-орбиту и потому служит адекватным инструментом для формулировки метода коррекции ошибок РС-кодами на основе АГ-орбит. Мощность АГ-орбит оценивается величиной N^2 , равной квадрату длины РС-кода. Поиск векторов-ошибок в передаваемых сообщениях новым методом сводится к перебору АГ-орбит, а реально — их норм-проекций, с последующим поиском этих ошибок внутри конкретной АГ-орбиты. Следовательно, предложенный метод работает практически в N^2 раз быстрее традиционных синдромных методов, действующих по принципу «синдром-ошибки», что, так или иначе, сводится к перебору всего множества корректируемых кодом векторов-ошибок до нахождения конкретного вектора.

Ключевые слова: линейный код, РС-код, проверочная матрица кода, автоморфизмы кодов, циклическая подстановка, аффинная подстановка, синдромы ошибок, орбиты векторов-ошибок, теория норм синдромов

Для цитирования: Липницкий, В. А. Коррекция ошибок в кодах Рида-Соломона с помощью их автоморфизмов / В. А. Липницкий, С. И. Семёнов // Вес. Нац. акад. навук Беларусі. Сер. фіз.-тэхн. навук. – 2021. – Т. 66, № 1. – С. 110–116. https://doi.org/10.29235/1561-8358-2021-66-1-110-116

Valery A. Lipnitsky, Sergey I. Semyonov

Military Academy of the Republic of Belarus, Minsk, Republic of Belarus

ERROR CORRECTION BY REED-SOLOMON CODES USING ITS AUTOMORPHISMS

Abstract. The article explores the syndrome invariants of AΓ-group of automorphisms of Reed–Solomon codes (RS-codes) that are a joint group of affine and cyclic permutations. The found real invariants are a set of norms of N Γ-orbits that make up one or another AΓ-orbit. The norms of Γ-orbits are vectors with $C_{\delta-1}^2$ coordinates from the Galois field, that are determined by all kinds of pairs of components of the error syndromes. In this form, the invariants of the AΓ-orbits were cumbersome and difficult to use. Therefore, their replacement by conditional partial invariants is proposed. These quasi-invariants are called norm-projections. Norm-projection uniquely identifies its AΓ-orbit and therefore serves as an adequate way for formulating the error correction method by RS-codes based on AΓ-orbits. The power of the AΓ-orbits is estimated by the value of N^2 , equal to the square of the length of the RS-code. The search for error vectors in transmitted messages by a new method is reduced to parsing the AΓ-orbits, but actually their norm-projections, with the subsequent search for these errors within a particular AΓ-orbit. Therefore, the proposed method works almost N^2 times faster than traditional syndrome methods, operating on the basic of the "syndrome – error" principle, that boils down to parsing the entire set of error vectors until a specific vector is found.

Keywords: linear code, RS-code, code verification matrix, automorphisms of codes, cyclic substitution, affine substitution, error syndromes, orbits of error vectors, theory of norms of syndromes

For citation: Lipnitsky V. A., Semyonov S. I. Error correction by Reed-Solomon codes using its automorphisms. *Vestsi Natsyyanal'nai akademii navuk Belarusi. Seryya fizika-technichnych navuk = Proceedings of the National Academy of Sciences of Belarus. Physical-technical series, 2021, vol. 66, no. 1, pp. 110–116 (in Russian). https://doi.org/10.29235/1561-8358-2021-66-1-110-116*

Введение. Коды Рида—Соломона (РС-коды) известны с начала 60-х годов XX в. [1, 2]. РС-коды получили широчайшее применение в радиоэлектронике и обработке информации для коррекции модульных ошибок, благодаря недвоичному алфавиту их задания. Широкий спектр исправляемых ошибок способствует росту популярности РС-кодов [3, 4]. Еще больше возможности РС-кодов раскрываются с переходом их теории на матричный язык [5]. При этом расширяются возможности применения теории полей Галуа в обработке РС-кодов [6] и, в частности, появляются перспективы развития на этот класс кодов теории норм синдромов (ТНС) [7, 8]. Формальная близость определений кодов Боуза—Чоудхури—Хоквингема (БЧХ-кодов) и РС-кодов, одинаковое действие циклических подстановок на координатах векторов-ошибок в обоих классах кодов позволили формально перенести определение нормы синдрома с БЧХ-кодов на РС-коды [7, 8]. Однако недвоичный алфавит последних вызвал существенное различие в содержании свойств норм синдромов этих кодов, что потребовало немалых усилий в их обосновании и в разработке норменных методов коррекции ошибок РС-кодами (детали см. в [8]).

Норменные методы декодирования, как известно, действуют на порядок быстрее классических синдромных. В данной работе исследованы инварианты совместной группы аффинных и циклических подстановок с перспективой получения новых методов обработки РС-кодов, действующих на порядок быстрее норменных.

Коды Рида-Соломона. В данной работе будем рассматривать коды Рида-Соломона, которые задаются проверочными матрицами вида

$$H = \begin{bmatrix} 1 & \alpha & \alpha^{2} & \dots & \alpha^{N-1} \\ 1 & \alpha^{2} & \alpha^{4} & \dots & \alpha^{2(N-1)} \\ \dots & \dots & \dots & \dots & \dots \\ 1 & \alpha^{\delta-1} & \alpha^{2(\delta-1)} & \dots & \alpha^{(N-1)(\delta-1)} \end{bmatrix} = \left[\alpha^{i}, \alpha^{2i}, \dots, \alpha^{(\delta-1)i}\right]^{T},$$
(1)

где $0 \le i \le N-1$, N=q-1, $\delta \ge 3$, с элементами α^i , принадлежащими полю $GF(q)=GF(2^m)$, $m \ge 3$, α — фиксированный примитивный элемент этого поля [9, 10]. Матрица (1) имеет размерность $(\delta-1)\times N$ и ранг $\delta-1$, очевидно, длина кода равна N, а размерность — $K=N-\delta+1$. В силу сказанного этот код естественно обозначать через RS(N,K). Как известно, минимальное расстояние данного кода равно $D=N-K+1=\delta$ [1, 2].

Приемное устройство инфокоммуникационной системы (ИКС), функционирующее на основе PC-кода, как и на основе любого линейного кода, проверяет очередное принятое сообщение \overline{x} на наличие ошибок вычислением синдрома $S(\overline{x}) = H \cdot \overline{x}^T$. Из структуры проверочной матрицы (1) следует, что синдром $S(\overline{x})$ здесь представляет собой вектор $S(\overline{x}) = (s_1, s_2, ..., s_{\delta-1})$ с $\delta - 1$ координатами из поля GF(q). Если $S(\overline{x}) \neq 0$, то $\overline{x} = \overline{c} + \overline{e}$, где \overline{c} – истинное передаваемое сообщение, а \overline{e} – наложившийся в процессе передачи информации в канале с «шумами» на правильное сообщение \overline{c} ненулевой вектор ошибок, который подлежит дальнейшей идентификации и устранению.

Синдром является единственным и главным свидетелем ошибок в принятом сообщении, только по нему мы можем определить структуру, вид и точное значение вектора \overline{e} . Априори синдром $S(\overline{x})$ может быть любым вектором δ –1-мерного пространства над полем GF(q). Таким образом, в РС-коде имеется $q^{\delta-1}$ различных синдромов векторов-ошибок.

Орбиты ошибок и их инварианты в РС-кодах. В ИКС на основе линейных кодов ТНС предлагает применять эффективные методы и алгоритмы декодирования ошибок, которые базируются на автоморфизмах кодов. Согласно [8], в РС-кодах рассматриваются два вида автоморфизмов – циклические и аффинные подстановки. Они образуют соответственно циклическую группу Γ , порожденную автоморфизмом σ , который действует на каждый вектор $\overline{x} = (x_1, x_2, ..., x_N)$ по правилу: $\sigma(\overline{x}) = (x_N, x_1, x_2, ..., x_{N-1})$, и циклическую группу A, порожденную аффинной подстановкой f_{α} , такой, что $f_{\alpha}(\overline{x}) = (\alpha x_1, \alpha x_2, ..., \alpha x_N)$, обе группы порядка N, а также

совместную группу АГ порядка N^2 . Под действием этих групп многообразие корректируемых векторов-ошибок разбивается на три вида орбит ошибок. Каждая орбита однозначно определяется действием соответствующей группы автоморфизмов на любой из векторов этой орбиты. Выбранный вектор \overline{e} можно считать задающим свою орбиту: Γ -орбиту $<\overline{e}>_{\Gamma}$, Λ -орбиту $<\overline{e}>_{\Lambda}$, Λ -орбиту $<\overline{e}>_{\Lambda}$. Γ -орбита $<\overline{e}>_{\Gamma}$ состоит из всевозможных векторов-ошибок, которые получаются циклическими сдвигами вправо всех координат вектора $\overline{e}=(e_1,e_2,\ldots,e_N)$. Как правило, Γ -орбиты содержат по N векторов, но могут, при наличии внутренней симметрии, содержать и меньшее число $\nu < N$ векторов. Тогда мощность ν самой Γ -орбиты является делителем числа N (детали см. в [7], гл. 2). Все Λ -орбиты имеют одинаковую мощность и одинаковую структуру: $\langle \overline{e}>_{\Lambda}=\left\{\left(\alpha^ie_1,\alpha^ie_2,\ldots,\alpha^ie_N\right),0\leqslant i\leqslant N-1\right\}$. Всякая Λ -орбита состоит из N Γ -орбит одинаковой мощности: $\langle \overline{e}>_{\Lambda}=\left\{\langle \overline{e}>_{\Gamma},<\alpha\overline{e}>_{\Gamma},\ldots,<\alpha^{N-1}\overline{e}>_{\Gamma}\right\}$.

Несложно видеть, что действия названных подстановок синхронно отражаются на синдромах ошибок по формулам:

$$S(\sigma(\overline{e})) = (\alpha s_1, \alpha^2 s_2, ..., \alpha^{\delta - 1} s_{\delta - 1}), \tag{2}$$

$$S(f_{\gamma}(\overline{e})) = (\gamma s_1, \gamma s_2, ..., \gamma s_{\delta-1}) = \gamma S(\overline{e}). \tag{3}$$

Из данных формул следует, что спектры синдромов орбит ошибок S(J), то есть множества синдромов ошибок тех или иных орбит J, копируют структуру самих орбит и совпадают с ними по мощности. Также на основании формулы (2) дается определение нормы синдрома (для сравнения см. [7], гл. 4).

О п р е д е л е н и е 1. Нормой синдрома $S(\overline{e})$ в коде RS(N, K) называется вектор $\overline{N}(S(\overline{e})) = (N_{12}, N_{13}, ..., N_{1(\delta-1)}, N_{23}, ..., N_{(\delta-2)(\delta-1)})$ с $C_{\delta-1}^2$ координатами N_{ij} , $1 \le i \le j \le \delta-1$, которые вычисляются следующим образом:

$$N_{ij} = s_j^{i/h_{ij}} / s_i^{j/h_{ij}}$$
, если $s_i \neq 0$; здесь $h_{ij} = \text{НОД}(i, j)$; $N_{ij} = \infty$, если $s_j \neq 0$, $s_i = 0$; $N_{ij} = -$ (не существует), если $s_i = s_j = 0$. (4)

П р и м е р 1. Для РС-кода с проверочной матрицей $H = \begin{bmatrix} \alpha^i, \alpha^{2i}, \alpha^{3i}, \alpha^{4i} \end{bmatrix}^T$ синдром каждого вектора-ошибки \overline{e} представляет собой вектор $S(\overline{e}) = (s_1, s_2, s_3, s_4)$. Пусть первые три компоненты этого синдрома отличны от нуля. Тогда нормой синдрома $S(\overline{e})$ является вектор $\overline{N}(S(\overline{e})) = (N_{12}, N_{13}, N_{14}, N_{23}, N_{24}, N_{34})$, координаты которого, в соответствии с формулой (4), вычисляются следующим образом:

$$N_{12} = s_2/s_1^2$$
; $N_{13} = s_3/s_1^3$; $N_{14} = s_4/s_1^4$; $N_{23} = s_3^2/s_2^3$; $N_{24} = s_4/s_2^2$; $N_{34} = s_4^3/s_3^4$. (5)

Нормы синдромов обладают широким спектром свойств, формулировка и обоснование которых составляют суть и содержание теории норм синдромов для кодов Рида—Соломона (см. [8]). Приведем наиважнейшие из этих свойств.

С в о й с т в о 1. Норма синдрома для любого вектора-ошибки \overline{e} не меняется при действии на этот вектор автоморфизма σ : $\overline{N}(S(\sigma(\overline{e}))) = \overline{N}(S(\overline{e}))$.

Следовательно, норма синдрома всех векторов ошибок каждой отдельно взятой Γ -орбиты $J = \langle \overline{e} \rangle_{\Gamma}$ принимает одно и то же значение. Данное обстоятельство позволяет ввести следующее O п P е P

вается норма синдрома любого вектора-ошибки из этой орбиты.

Нормы Γ -орбит, принадлежащих одной $A\Gamma$ -орбите, как и сами Γ -орбиты, четко и однозначно взаимосвязаны.

С в о й с т в о 2. Пусть в РС-коде с проверочной матрицей (1) норма $\overline{N}\left(S\left(\overline{e}\right)\right) = \left(N_{12}, N_{13}, ..., N_{(\delta-2)(\delta-1)}\right)$. Тогда $\overline{N}\left(S\left(f_{\gamma}\left(\overline{e}\right)\right)\right) = \left(N_{12}^{\gamma}, N_{13}^{\gamma}, ..., N_{(\delta-2)(\delta-1)}^{\gamma}\right)$, где

$$N_{ij}^{\gamma} = N_{ij} / \gamma^{(j-i)/h_{ij}}, 1 \le i < j \le \delta - 1, \ h_{ij} = \text{HOД}(i, j).$$
 (6)

В частности, для РС-кода из примера 1 норма $\overline{N}\Big(S\Big(f_{\gamma}\left(\overline{e}\right)\Big)\Big) = \Big(N_{12}^{\gamma},N_{13}^{\gamma},N_{14}^{\gamma},N_{23}^{\gamma},N_{24}^{\gamma},N_{34}^{\gamma}\Big),$ где $N_{12}^{\gamma} = N_{12}/\gamma$; $N_{13}^{\gamma} = N_{13}/\gamma^2$; $N_{14}^{\gamma} = N_{14}/\gamma^3$; $N_{23}^{\gamma} = N_{23}/\gamma$; $N_{24}^{\gamma} = N_{24}/\gamma$; $N_{34}^{\gamma} = N_{34}/\gamma$.

Координат у норм синдромов существенно больше, чем компонент у синдромов, из которых они получены. Поэтому между координатами $\bar{N}(S(\overline{e}))$ существует взаимосвязь.

С в о й с т в о 3. Пусть в коде RS(N,K) у синдрома $S(\overline{e})$ компонента $s_1 \neq 0$. Тогда у нормы синдрома $\overline{N}(S(\overline{e}))$ координаты N_{kj} , $2 \leq k \leq j \leq \delta$ —1 при условии $N_{1k} \neq 0$ выражаются через координаты N_{1j} , $2 \leq j \leq \delta$ —1 по формуле

$$N_{kj} = N_{1j}^{k/h_{kj}} / N_{1k}^{j/h_{kj}}, (7)$$

если $N_{1k}=0,\,N_{lj}\neq 0,\,$ то $N_{kj}=\infty;\,$ если же $N_{1k}=0,\,N_{lj}=0,\,$ то N_{kj} не существует.

Свойство 3 разбивает многообразие $K_{\rm A\Gamma}$ всех ${\rm A\Gamma}$ -орбит векторов-ошибок, корректируемых кодом RS(N,K), на два непересекающихся класса в соответствии с неравенством или равенством нулю первой компоненты s_1 синдрома образующей каждой орбиты ошибок. Для всякой ${\rm A\Gamma}$ -орбиты $<\overline{e}>_{{\rm A\Gamma}}$ с $s_1\neq 0$ и для каждой ${\rm \Gamma}$ -орбиты $<\overline{e}_i>_{{\rm \Gamma}}\in <\overline{e}>_{{\rm A\Gamma}}$ достаточно сохранять от вектора $N\left(S\left(\overline{e}_i\right)\right)$ только первые $\delta-2$ координаты $N_{12},N_{13},\ldots,N_{1(\delta-1)}$ согласно свойству 3. У всех орбит $<\overline{e}>_{{\rm A\Gamma}}$ с компонентой $s_1=0$ синдрома $S\left(\overline{e}\right)$ (составляющих второй класс) для каждой ${\rm \Gamma}$ -орбиты $<\overline{e}_i>_{{\rm \Gamma}}\in <\overline{e}>_{{\rm A\Gamma}}$ названные $\delta-2$ координаты являются вырожденными, а потому существенными и значимыми у вектора $N\left(S\left(\overline{e}_i\right)\right)$ являются остальные $C_{\delta-1}^2-(\delta-2)$ координаты: $N_{23},N_{24},\ldots,N_{(\delta-2)(\delta-1)}.$

Аналогичную дихотомию можно совершить и со вторым классом АГ-орбит.

С в о й с т в о 4. Если у синдрома $S(\overline{e})$ компоненты $s_1 = 0$, $s_2 \neq 0$, то у нормы синдрома $N(S(\overline{e}))$ координаты N_{kj} , $3 \leq k \leq j \leq \delta$ —1 функционально выражаются через координаты $N_{2k} \neq 0$, N_{2j} (в количестве δ — 3, по формулам, более сложным, чем формулы (7), см. [8]).

С в о й с т в о 5. Пусть в коде RS(N, K) из примера 1 две Γ -орбиты J_1 , J_2 имеют одинаковые нормы $N(J_1) = N(J_2)$, отличные от нормы $N\left(S\left(\overline{e}\right)\right) = (-, -, -, -, -, -)$. Пусть Γ -орбита J_1 является полной с полным спектром синдромов. Тогда для всякого вектора $\overline{g} \in J_2$ с синдромом $S\left(\overline{g}\right) = S$ найдется вектор-ошибка $\overline{f} \in J_1$, синдром которого $S\left(\overline{f}\right) = S$.

Нормы АГ-орбит и их проекции. Каждая АГ-орбита представляет собой объединение N Г-орбит, переходящих друг в друга под действием аффинной подстановки f_{α} , где α – примитивный элемент поля Галуа $GF(2^m)$. Это действие синхронно отражается на синдромах образующих Г-орбит (формула (3)) и на нормах синдромов образующих (формула (6)). Для всякой Г-орбиты $J=\langle \overline{e} \rangle_{\Gamma}$ ее норма $\overline{N}(J)$ является инвариантом относительно действия группы Г. Тогда набор норм $H=\left\{\overline{N}(J),\,\overline{N}\left(f_{\alpha}(J)\right),\,\overline{N}\left(f_{\alpha^2}(J)\right),\,...,\,\overline{N}\left(f_{\alpha^{N-1}}(J)\right)\right\}$ инвариантен относительно действия всех подстановок из группы АГ, то есть является фактическим АГ-инвариантам. Для краткости множество H (или, более точно, множество H_J) будем называть нормой АГ-орбиты J.

Свойство 2 означает, что, если у нормы $N\left(S\left(\overline{e}\right)\right)$ координата N_{ij} принадлежит $GF(2^m)^*$, то в норме H_J АГ-орбиты $J=<\overline{e}>_{A\Gamma}$ координата N_{ij} пробегает все N значений мультипликативной группы $GF(2^m)^*$. Исключение составляют лишь те редкие значения ij, для которых НОД $(l_{ij},N)==d>1$, $l_{ij}=(j-i)/h_{ij}$. Например ij=14. Тогда $h_{ij}=1$; $l_{ij}=3$. Для четных $m=2\mu$, $\mu\geqslant 1$, величина N, как известно, делится на 3. Поэтому величина α^3 порождает подгруппу $<\alpha^3>$ порядка N/3 в группе $GF(2^{2\mu})^*$. Следовательно, значения $N_{14}^\gamma=N_{14}/\gamma^3$, когда γ пробегает все значения группы $GF(2^{2\mu})^*$, будут пробегать все значения одного из смежных классов группы $GF(2^{2\mu})^*$ по подгруппе $<\alpha^3>$, то есть лишь N/3 значений.

В силу сказанного считаем, что у всех АГ-орбит J корректируемого многообразия K векторов-ошибок норма H_J содержит в качестве первой координаты N_{ij} , принадлежащей $GF(2^m)^*$, такую, что $HOД(l_{ij},N)=1$. Пусть у нормы фиксированной Γ -орбиты $<\overline{e}_J>_{\Gamma}\in J$ координата $N_{ij}=1$. Тогда вектор \overline{e}_J берем в качестве образующего АГ-орбиты J, все остальные Γ -орбиты из J задаем посредством аффинных преобразований Γ -орбиты $<\overline{e}_J>_{\Gamma}$. Норму $N(S(\overline{e}_{\Gamma}))$ синдрома $S(\overline{e}_{\Gamma})$ назовем проекцией нормы H_J А Γ -орбиты J и будем обозначать через $\Pr H_J$. Γ -орбиту $<\overline{e}>_{\Gamma}$ с нормой $\Pr H_J$ будем называть проекцией А Γ -орбиты J.

Декодирование ошибок РС-кодами с помощью АГ-орбит. АГ-орбиты и их проекции позволяют сформулировать эффективный метод коррекции ошибок в РС-кодах, альтернативный традиционным методам. Для его реализации множество K всех декодируемых ошибок распределяем по Г-орбитам (множество K_{Γ}), а затем – и по АГ-орбитам (множество $K_{\Lambda\Gamma}$). Все Г-орбиты множества K_{Γ} считаются полными с полными спектрами синдромов. Так, для РС-кодов из примера 1 это заведомо гарантировано. Отмеченной выше процедурой строим проекции АГ-орбити их норм. Таким образом, множество $K_{\Lambda\Gamma}$ должно быть представлено списком 1 — образующих \overline{g}_J Г-обит-проекций каждой АГ-орбиты $J \in K_{\Lambda\Gamma}$, списком 2 — синдромов образующих $S(\overline{g}_J)$ и списком 3 — норм-проекций PrH_J .

Пусть ИКС функционирует на основе конкретного кода RS(N,K). Приняв очередное сообщение \overline{x} , ИКС вычисляет его синдром $S(\overline{x})$. Неравенство $S(\overline{x}) \neq 0$ свидетельствует о наличии ошибок в принятом сообщении: $\overline{x} = \overline{c} + \overline{e}$, $\overline{e} \neq \overline{0}$, \overline{c} — истинное передаваемое сообщение. В этом случае декодер включает процедуры идентификации вектора-ошибки \overline{e} в сообщении \overline{x} и его устранения. Для этого вычисляем норму синдрома $\overline{N}^* = \overline{N}\big(S(\overline{x})\big)$, точнее, одну из частей норменного вектора, определяемую свойством 3 или 4. Находим первую ненулевую координату N_{ij}^* , $1 \leq i < j \leq \delta-1$, вектора \overline{N}^* . Определяем показатель λ этой компоненты $\left(N_{ij}^* = \alpha^\lambda, 0 \leq \lambda \leq N\right)$.

Если у координаты N_{ij}^* величина $l_{ij}=1$, то к вектору \overline{x} применяем аффинную подстановку $f_{\alpha^{\lambda}}$, соответственно преобразуем $S(\overline{x})$ и норму \overline{N}^* . В силу формул (6) координата N_{ij}^* при этом преобразуется в 1, тем самым вектор \overline{N}^* преобразуется в одну из норм-проекции $f_{\alpha^{\lambda}}(\overline{N}^*)$ списка 3. Пусть $f_{\alpha^{\lambda}}(\overline{N}^*)=\Pr H_{\widetilde{J}}$ из этого списка. Следовательно, неизвестная вектор-ошибка $f_{\alpha^{\lambda}}(\overline{e})=\alpha^{\lambda}\cdot\overline{e}$ принадлежит АГ-орбите \widetilde{J} , а точнее, Г-орбите $\langle\overline{g}_{\widetilde{J}}\rangle_{\Gamma}$. Согласно формуле (3) синдром $S\left(f_{\alpha^{\lambda}}(\overline{e})\right)=\alpha^{\lambda}\cdot S(\overline{e})\in S\left(\langle\overline{g}_{\widetilde{J}}\rangle\right)$. Сравнивая компоненты синдромов $S\left(\alpha^{\lambda}\overline{e}\right)$ и $S\left(\overline{g}_{\widetilde{J}}\right)$, определяем величину μ такую, что $\sigma^{\mu}\left(g_{\widetilde{J}}\right)=\alpha^{\lambda}\overline{e}$. Тогда вектор $\alpha^{\lambda}\cdot\overline{x}+\sigma^{\mu}\left(\overline{g}_{\widetilde{J}}\right)=\alpha^{\lambda}\cdot\overline{c}$ не содержит ошибок и вектор $\alpha^{N-\lambda}\cdot\left(\alpha^{\lambda}\cdot\overline{c}\right)=\overline{c}$ — исправленное истинное передаваемое сообщение.

Пусть у координаты N_{ij}^* величина $l_{ij} > 1$, но НОД $(l_{ij}, N) = 1$. Тогда, согласно соотношению Безу, существуют целые числа u, v, такие, что $l_{ij}u + Nv = 1$. Следовательно, $l_{ij}u\lambda + Nv\lambda = \lambda$. Пусть w = uv (mod N). Тогда к вектору \overline{x} применяем аффинную подстановку f_{α^W} вместо f_{α^λ} и добьемся тех же результатов.

П р и м е р 2. Код RS(7,3) из примера 1 исправляет ошибки весом 1, 2 в количестве $|K| = (q-1)^2 \left(1 + C_N^2\right) = 1078$. Они делятся на 154 полные Γ -орбиты и 22 полные Γ -орбиты. Таблица содержит списки всех 21 проекций-образующих Γ -орбит векторов-ошибок весом 2, синдромов образующих и их норм синдромов. Здесь примитивный элемент Γ является корнем неприводимого полинома Γ 0 на Γ 1.

Проекции-образующие АГ-орбит, их синдромы и нормы синдромов в (7,3)-РС-коде
Projection-generating AΓ-orbits, their syndromes and norms of syndromes in the (7,3)-RS-code

№ п/п	g	$S(\overline{g})$	$\overline{N}(S(\overline{g}))$	№ п/п	g	$S(\overline{g})$	$\overline{N}(S(\overline{g}))$
1	(1,1,0,0,0,0,0)	$(\alpha^5, \alpha^3, \alpha^2, \alpha^6)$	(1,α,1)	11	$(\alpha^6,0,\alpha,0,0,0,0)$	$(\alpha^5, \alpha^3, \alpha^4, \alpha)$	$(1,\alpha^3,\alpha^2)$
2	$(1,\alpha^5,0,0,0,0,0)$	$(\alpha^4,0,\alpha^5,\alpha^3)$	(0,1,α)	12	$(\alpha^4,0,\alpha^5,0,0,0,0)$	$(\alpha^6, \alpha^5, 0, 1)$	$(1,0,\alpha^4)$
3	$(\alpha^2, \alpha^6, 0, 0, 0, 0, 0, 0)$	$(\alpha^3, \alpha^6, 0, 1)$	$(1,0,\alpha^2)$	13	(1,0,0,1,0,0,0)	$(\alpha^2, \alpha^4, \alpha^3, \alpha)$	$(1,\alpha^4,1)$
4	$(\alpha^3, \alpha^6, 0, 0, 0, 0, 0)$	$(\alpha^2, \alpha^4, 1, 0)$	$(1,\alpha,0)$	14	$(\alpha^2,0,0,\alpha,0,0,0)$	$(\alpha^5, \alpha^3, 1, \alpha)$	$(1,\alpha^6,\alpha^2)$
5	$(\alpha^2, \alpha^4, 0, 0, 0, 0, 0, 0)$	$(\alpha^4, \alpha, \alpha^3, \alpha^6)$	$(1,\alpha^5,\alpha^4)$	15	$(\alpha^3,0,0,\alpha,0,0,0)$	$(\alpha,\alpha^2,0,\alpha^5)$	(1,0,α)
-				16	$(\alpha^2,0,0,\alpha^5,0,0,0)$	$(\alpha^6, \alpha^5, \alpha^3, 1)$	$(1,\alpha^6,\alpha^4)$
6	$(\alpha^3, \alpha^4, 0, 0, 0, 0, 0)$	$(\alpha^6, \alpha^5, \alpha^2, \alpha^4)$	$(1,\alpha^5,\alpha)$	17	$(\alpha^3,0,0,\alpha^5,0,0,0)$	$(\alpha^4, \alpha, 1, 0)$	$(1,\alpha^4,0)$
7	(1,0,1,0,0,0,0)	$(\alpha^3, \alpha^6, \alpha^4, \alpha^5)$	$(1,\alpha^2,1)$	18	$(\alpha^6,0,0,1,0,0,0)$	$(\alpha^5,0,\alpha,\alpha^3)$	$(0,1,\alpha^4)$
8	$(\alpha^6,0,\alpha^5,0,0,0,0)$	$(\alpha^4, \alpha, 1, 0)$	$(1,\alpha^2,0)$	19		$(0,\alpha^3,\alpha,1)$	$(\infty,\infty,\infty,1,\alpha)$
9	$(\alpha^4,0,\alpha,0,0,0,0)$	$(\alpha,\alpha^2,\alpha^6,\alpha^5)$	$(1,\alpha^3,\alpha)$	20	2	$(0,\alpha^6,\alpha^2,1)$	$(\infty,\infty,\infty,1,\alpha^2)$
10	$(1,0,\alpha^3,0,0,0,0)$	$(\alpha,0,\alpha^3,\alpha^6)$	$(0,1,\alpha^2)$	21	$(\alpha^2,0,0,\alpha^6,0,0,0)$	$(0,\alpha^4,\alpha^6,\alpha^5)$	$(\infty,\infty,\infty,1,\alpha^4)$

Пусть ИКС на основе кода RS(7,3) приняла сообщение $\overline{x}=(\alpha^3,\alpha^6,\alpha^3,\alpha^2,1,0,\alpha^5)$. Его синдром $S(\overline{x})=(\alpha^2,\alpha^5,\alpha^3,0)$, а норма синдрома $\overline{N}^*=\overline{N}(S(\overline{x}))=(\alpha,\alpha^4,0,\alpha^5,0,0)$. По первой ненулевой координате нормы синдрома определяем, что аффинная подстановка f_α преобразует принятое сообщение в вектор $\overline{x}^*=f_\alpha(\overline{x})=(\alpha^4,1,\alpha^4,\alpha^3,\alpha,0,\alpha^6)$ с синдромом $S(\overline{x}^*)=(\alpha^3,\alpha^6,\alpha^4,0)$ и нормой синдрома $\overline{N}(S(\overline{x}^*))=(1,\alpha^2,0,\alpha^4,0,0)$. Сравним полученную норму с данными таблицы. Она совпадает с нормой-проекцией АГ-орбиты под номером 8. В 8-й строке находится образующая проекция $\overline{g}_8=(\alpha^6,0,\alpha^5,0,0,0)$ с синдромом $S(\overline{g}_8)=(\alpha^4,\alpha,1,0)$. Вектор \overline{e}^* в сообщении \overline{x}^* принадлежит Г-орбите $<\overline{g}_8>_\Gamma$. Отношение первых компонент синдромов $S(\overline{x}^*)=S(\overline{e}^*)$ и $S(\overline{g}_8)$ — это величина $\alpha^3/\alpha^4=\alpha^6$, которая говорит о том, что вектором-ошибкой в сообщении \overline{x}^* является вектор $\overline{e}^*=\sigma^6(\overline{g}_8)=(0,\alpha^5,0,0,0,\alpha^6)$. Тогда сумма $\overline{x}^*+\overline{e}^*=\overline{c}^*=(\alpha^4,\alpha,\alpha^4,\alpha^3,\alpha,0,0)$ является вектором без ошибок. Отсюда следует, что $\overline{c}=\alpha^6(\overline{c}^*)=\alpha^6(\alpha^4,\alpha,\alpha^4,\alpha^3,\alpha,0,0)=(\alpha^3,1,\alpha^3,\alpha^2,1,0,0)$ – истинное переданное сообщение. Контрольная проверка: равенство $H\cdot\overline{c}^T=\overline{0}$ подтверждает правильность проведенных вычислений.

Классические синдромные методы работают по принципу «синдром-ошибка» и, так или иначе, реализуют процедуру поиска конкретной ошибки во всем многообразии корректируемых кодом ошибок. Норменные методы оперируют с Γ -орбитами ошибок, содержащими, в основном, по N векторов-ошибок: перебирается список Γ -орбит до нахождения нужной нормы, дальнейшая идентификация ошибки осуществляется внутри найденной Γ -орбиты. Поисковые процедуры среди Γ -орбит, несомненно, в N раз короче классических синдромных методов. Предложенный в данной работе метод коррекции ошибок, основанный на поиске нужной Λ -орбиты среди многообразия подобных и содержащих, как правило, по N^2 векторов-ошибок, является в N раз эффективнее норменных методов.

Заключение. Группы Γ и A циклических и аффинных подстановок, их произведение А Γ действуют на линейных кодах Рида—Соломона, разбивают многообразие ошибок в этих кодах соответственно на три вида орбит: Γ -орбиты, A-орбиты, A Γ -орбиты. Строение каждой орбиты имеет синхронное отражение на синдромных спектрах этих орбит. Нормы синдромов — инварианты группы Γ — являются своеобразными метками, идентификаторами Γ -орбит векторов-ошибок, обладают рядом важных свойств, обеспечивающих высокоскоростные норменные методы коррекции ошибок РС-кодами. Эти методы действуют на порядок быстрее классических синдромных методов.

В данной работе исследована идея применения АГ-орбит с целью создания методов декодирования РС-кодов, на порядок более быстрых по сравнению с норменными методами. В процессе исследования выяснилось, что, к сожалению, реальный синдромный инвариант группы АГ в РС-кодах — совокупность норм Г-орбит, составляющих АГ-орбиты, — оказался слишком громозд-ким для применения. Замена ему найдена в квази-нормах, нормах-проекциях, которые находятся единой, простой и обезличенной процедурой внутри спектра норм каждой АГ-орбиты. В завершение сформулирован обобщенный перестановочный метод коррекции ошибок РС-кодами с помощью норм-проекций, то есть с помощью АГ-орбит. Для его реализации требуются несложные вычисления в полях Галуа с периодическим обращением к устройствам хранения информации. Конкретный пример наглядно демонстрирует эффективность разработанного метода.

Список использованных источников

- 1. Мак-Вильямс, Ф. Дж. Теория кодов, исправляющих ошибки / Ф. Дж. Мак-Вильямс, Н. Дж. А. Слоэн. М.: Связь, 1979. 744 с.
 - 2. Блейхут, Р. Теория и практика кодов, контролирующих ошибки / Р. Блейхут. М.: Мир, 1986. 576 с.
- 3. Скляр, Б. Цифровая связь: теоретические основы и практическое применение: учеб. пособие / Б. Скляр. 2-е изд., испр. М.: Вильямс, 2003. 1104 с.
- 4. Кудряшов, Б. Д. Основы теории кодирования: учеб. пособие / Б. Д. Кудряшов. СПб.: БХВ-Петербург, $2016.-400~\rm c.$
- 5. Маров, А. В. Матричный формализм кодов Рида—Соломона / А. В. Маров, А. Ю. Утешев // Вестн. СПбГУ. Сер. 10, Прикладная математика. Информатика. Процессы управления. 2016. Вып. 4. С. 3–17. https://doi.org/10.21638/1170 1%2Fspbu10.2016.401
- 6. Семенов, С.И. Преимущества применения теории полей Галуа для обработки РС-кодов / С.И. Семенов, В.А. Липницкий // Сборник научных статей Военной академии Республики Беларусь. Минск: Воен. акад. Респ. Беларусь, 2019. Вып. 36. С. 84–93.

- 7. Липницкий, В. А. Норменное декодирование помехоустойчивых кодов и алгебраические уравнения / В. А. Липницкий, В. К. Конопелько. Минск: Изд. центр БГУ, 2007. 239 с.
- 8. Липницкий, В. А. Нормы синдромов и их свойства в кодах Рида-Соломона / В. А. Липницкий, С. И. Семенов // Вестн. Полоц. гос. ун-та. Сер. С. Фундаментальные науки. 2020. № 4. С. 2–9.
 - 9. Лидл, Р. Конечные поля: в 2 т. / Р. Лидл, Г. Нидеррайтер. М.: Мир, 1988. 822 с.
- 10. Липницкий, В. А. Современная прикладная алгебра. Математические основы защиты информации от помех и несанкционированного доступа / В. А. Липницкий. Минск: БГУИР, 2006. 88 с.

References

- 1. MacWilliams F. J., Sloan N. J. A. *The Theory of Error-Correcting Codes*. North Holland, 1977. XII, 762 p. (North-Holland Mathematical Library; Vol. 16).
 - 2. Blejhut R. Theory and Practice of Error Control Codes. Addison-Wesley, 1983. 500 p.
 - 3. Sklar B. Digital Communication. Fundamentals and Applications. 2nd ed. Prentice Hall PTR, 2001. 1104 p.
 - 4. Kudryashov B. D. Fundamentals of Coding Theory. St. Petersburg, BHV-Petersburg Publ., 2016. 400 p. (in Russian).
- 5. Marov A. V., Uteshev A. Yu. Matrix formalism of the Reed-Solomon codes. *Vestnik Sankt-Peterburgskogo gosu-darstvennogo universiteta. Seriya 10, Prikladnaya matematika. Informatika. Protsessy upravleniya = Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 2016*, issue 4, pp. 3–17. https://doi.org/10.21638/11701%2Fspbu10.2016.401
- 6. Semyonov S. I., Lipnitsky V. A. Advantages of using Galois field theory for processing RS-codes. *Sbornik nauchnyh statei Voennoi academii Respubliki Belarus*' [Collection of Scientific Articles of the Military Academy of the Republic of Belarus], 2019, iss. 36, pp. 84–93 (in Russian).
- 7. Lipnitsky V. A., Konopel'ko V. K. Norm Decoding of Error-Correcting Codes and Algebraic Equations. Minsk, BSU Publ. Center, 2007. 239 p. (in Russian).
- 8. Lipnitsky V. A., Semyonov S. I. Norms of syndromes and their properties in Reed-Solomon codes. *Vestnik Polotskogo gosudarstvennogo universiteta. Seriya C. Fundamental 'nye nauki = Vestnik of Polotsk State University. Part C. Fundamental Sciences*, 2020, no. 4, pp. 2–9 (in Russian).
- 9. Lidl R., Niderrajter G. *Finite Fields (Encyclopedia of Mathematics and its Applications)*. 2nd ed. Cambridge University Press, 2008. 772 p. https://doi.org/10.1017/CBO9780511525926
- 10. Lipnitsky V. A. Modern Applied Algebra. The Mathematical Foundations of Protecting Information from Interference and Unauthorized Access. Minsk, BSUIR, 2006. 88 p. (in Russian).

Информация об авторах

Липницкий Валерий Антонович – доктор технических наук, профессор, заведующий кафедрой высшей математики, Военная академия Республики Беларусь (пр. Независимости, 220, 220057, Минск, Республика Беларусь). E-mail: valipnitski@yandex.by

Семёнов Сергей Иванович — магистр технических наук, адъюнкт кафедры информационно-вычислительных систем, Военная академия Республики Беларусь (пр. Независимости, 220, 220057, Минск, Республика Беларусь). E-mail: semyonov4213@gmail.com

Information about the authors

Valery A. Lipnitsky – D. Sc. (Engineering), Professor, Head of the Department of High Mathematics, Military Academy of the Republic of Belarus (220, Nezavisimosti Ave., 220057, Minsk, Republic of Belarus). E-mail: valipnitski@yandex.by

Sergey I. Semenov – Graduate Student (Engineering), Adjunct of Chair of Information and Computing Systems, Military Academy of the Republic of Belarus (220, Nezavisimosti Ave., 220057, Minsk, Republic of Belarus). E-mail: semyonov4213@gmail.com