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IMPROVED MODEL OF POWDER BLEND COMPACTING IN A ROLL COMPACTOR

Abstract. A new mathematical model of mineral fertilizer compacting using a roll compactor is developed. This model
is based on the transition to the values of stress tensor components averaged over the cross-sectional area of the powder mix-
ture flow. To define these stresses, equations of equilibrium of the elementary layer determined in the mixture by two planes
perpendicular to the flow direction are composed. To obtain relatively simple analytical relations in the calculations, the hy-
pothesis of a power-law dependence of hydrostatic pressure on mixture density, accepted in the framework of the Johansen
model, was used. In order to take into account changes in the mechanical characteristics of the mixture (angle of internal
friction, coefficient of external friction, transverse strain coefficient) while compacting, we approximated the known experi-
mental dependencies of the corresponding characteristics on the density. The inter-particle cohesion parameter was taken to
be proportional to the hydrostatic pressure. The model allows calculating the gap between the rolls surfaces for a given initial
bulk density and the required flake density. With the known gap value, the distribution of the axial average stresses in the
powder mixture, the normal and shear stresses on the rolls’ surfaces are determined. The results of the calculations of the rolls
surface gap and the normal roll pressure diagram are compared with the experimental data given in the literature for the urea
compacting process.
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YCOBEPIIEHCTBOBAHHA S MOJIEJIb TIPECCOBA HU SI IIOPOIIIKOBOM CMECH B BAJIKOBOM ITPECCE

AHHoTanus. Pa3zpaboraHa mMaremaTHyeckas MOJEIb IPECCOBAHUS MHHEPAJIBHOTO YZOOPEHUS Ha BAaJIKOBOM IIpecce.
JlaHHast MOZIENIb OCHOBAHA Ha MEPEX0Je K YCPETHEHHBIM II0 IUIOLIAAH MOINEPEYHOr0 CEUCHMs MOTOKA MOPOLIKOBOM CMeCH
3HAYCHHSIM KOMIIOHCHT TEH30pa HampspKeHHH. s OnpenesieH s STHX HANPSDKCHUI COCTABISIOTCS YPABHEHHUS pPaBHOBE-
CHsl 3JIEMEHTAPHOI'O CJIOS, BBIACISEMOIO B CMECH JBYMS IUIOCKOCTSIMU, HEPICHIUKYIISIPHBIMU K HalpaBJICHHIO ITOTOKA.
Jlnst obecriedeHHsT BOSMOXKHOCTH IOJNYYEHHs OTHOCHTEIBHO MPOCTBIX aHAJMTHYCCKHX COOTHOIICHHUH MpH pacyerax HC-
110J130BaHA IPHHATAS B paMKaX MOJIe/H FloXaHceHa THIIOTe3a O CTENEHHOI 3aBUCHMOCTH THIPOCTATHYECKOr0 IABJIEHHS OT
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IUIOTHOCTH CMeCH. J[J1st y4eTa M3MEHCHU I MEXaHHYECKUX XapaKTePUCTHK cMecH (yTia BHY TPEHHEr0 TpeHus, KodhuieHTa
BHEIIHEr0 TpeHus, KoddduuneHTa nomnepedHoil aedopmaliim) B mporecce npeccoBaHus MPOU3BOIMIACH AMITPOKCHMAIINS
M3BECTHBIX IKCIIEPUMEHTAIBHEIX 3aBUCHMOCTEH COOTBETCTBYIONINX XapaKTEPUCTHUK OT IuIoTHOCTH. [Tapamerp mMexuacTHu-
HOT'O CLEIJICHHUs MPUHUMAJICS TPOIOPIHOHAIBHBIM THAPOCTATHUSCKOMY JIaBICHUI0. MoJIeb MO3BOISIET BBIYMCIUTD 3HAUe-
HHE 3a30pa ME¥kKy IIOBEPXHOCTSIMU BaJIOB IIPH 3aJIaHHBIX 3HAUCHUSAX UCXOJHON HACBHIITHON INIOTHOCTH CMECH M TpeOyemoi
IUIOTHOCTH TUINTKH. IIpH M3BECTHOM 3HAUECHUU 3a30pa YCTAHABIMBAIOTCS PACIPECICHHS OCEBBIX YCPEAHEHHBIX HAIPsKe-
HHIi B IIOPOIIKOBOII CMECH, HOPMAJIBHOT'O U CABUIOBOTO HAIIPSKCHHUI Ha MIOBEPXHOCTH BaJIOB. Pe3yibTaThl pacyeToB 3a30pa
MEXIy HOBEPXHOCTSMHU BaJIOB M SIIOPHI HOPMAJIBHOTO JIaBJIICHHS HA BaJl CONMOCTABIICHBI C IPHBECHHBIMU B JINTEPATYPHBIX
HCTOYHHUKAX DKCIEPHMEHTAIEHBIMU JAHHBIMH JUIS ITPOIecca MPECCOBAHUS MOYCBHHBI.

Ku1roueBblIe cJioBa: mpeccoBaHue, MOPOIIKOBAsI CMECh, BAIKOBBII MPECC, ypaBHEHHsI PABHOBECH I, KOMIIOHEHTHI TEH30pa
HaIpsKEHUH, yroJl BHYTPEHHET0 TPEHU S, MeXXYaCTHYHOE CLECTIIICHHE

Just uutupoBanus: Ymxkuk, C. A. YcoBepIeHCTBOBaHHAS MOJIEIIb ITPECCOBAHUS MMOPOLTKOBOI CMECH B BAJIKOBOM ITpec-
ce / C.A. Umxuk, O.M. Bomuexk, B.fI. [Ipymax / Bec. Han. akan. maByk bemapyci. Cep. ¢i3.-toxH. HaByk. — 2021. — T. 66,
Ne3. —C.288-297. https://doi.org/10.29235/1561-8358-2021-66-3-288-297

Introduction. The modern stage of technological equipment development is characterized, in par-
ticular, by increased requirements for the quality of manufactured products. In addition, in a competitive
environment, the role of premier choice of design and process values, providing the required level of
quality while meeting the reliability criterion and reducing the costs, is high. This indicates the rele-
vance of further improvement of calculation methods that allow predicting the power and energy equip-
ment load during the technological processes.

At present, the technology of dry granulation of powder bulk materials by compacting without use
of binding agents is widely used in production of mineral fertilizers. The most important and expensive
equipment in the process lines, however, is a roll compactor (Figure 1), that works as follows: the initial
bulk material is fed through the feed system in the area between two rotating against each other rolls,
where the material is compacted and formed into sheet (flakes), which are further crushed, classified
and additionally treated. Further optimization of process parameters for compacting the bulk materials
and improvement of roll compactors’ design is an important scientific and technical task, which can-
not be successfully solved without relevant mathematical modeling of compacting processes of powder
bulk materials.

When describing the process of mineral fertil-
izers compacting on roll compactors [1], the sim-
plified Johansen model [2, 3] is currently mainly
used. The main disadvantages of this model are
the following.

1. A plane stress state of a powder mixture is
considered. The axial component of the stress ten-
sor corresponding to the direction of the compact-
ing rolls is neglected.

2. The cohesion between the particles in the
powder mixture is not taken into account. In the
classical Johansen model, the limit state of a ma-
terial is defined by one characteristic, the angle
of internal friction. In later modifications of this
model [4] the angle between the coordinate axis
and the slip line is also introduced. In this case,
along with the minimum (residual) angle of inter-
nal friction, the effective angle of internal friction
is included in the limit state equation. However,
even in the paper [4] the calculations are made
without taking into account the cohesion of the
powder mixture particles.

3. The contact area between the powder mix-
ture and the rollers surfaces is divided into a feed
and sealing area. This does not consider the final Figure 1. Roll compactor PVP 1000 X 650MG
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extrusion area in which the already formed flakes are displaced. By neglecting this area, the calculated
value of the longitudinal (in the direction of the mixture movement) stress, when the flake comes out of
rolls contact, reaches its maximum value. However, in the absence of extrusion, the cross-sectional av-
erage of this stress should be zero.

4. The change in mixture characteristics with a change in density is not taken into account. It was
experimentally found out [5] that during compacting such characteristics as internal friction angle and
external friction coefficient (with the roll surface) change by a factor of two or more.

The noted weaknesses of the Johansen model are eliminated in the frame of the Katashinsky—Stern
model, described in detail, in particular, in the paper [6]. However, this refined model also has a number
of weaknesses.

1. The real region of space occupied by the powder mixture during compacting is replaced by a pris-
matic area whose width is equal to the gap between the roll surfaces. This assumption allows the model
to be used only in the range of small angles of powder capture.

2. In the sealing area, using Katashinsky—Stern model, Coulomb’s law for shear stress on rolls sur-
face is assumed to be fulfilled. At the same time, the sealing area is characterized by the cohesion of
powder particles to the roll surface and the shear stress within this area changes its direction.

In relation to the above, the aim of this study is to develop a combined mathematical model of a roll
compactor, which would take advantage and eliminate the disadvantages of the existing calculation
methods.

Description of the calculation methods. The operation of a roll compactor is schematically shown
in Figure 2. The following designations are adopted in the figure: R — roll radius; p, — feed pressure; 4, —
gap between roll surfaces; o — angular velocity of rolls; 6 — current angle, varying from 0 to a; o — angle
defining the beginning of feed area; y — angle defining the boundary between feed and sealing areas;
B — angle defining the boundary between sealing and extrusion areas. Roller-compaction is described
in Cartesian coordinates. The x-axis is vertical, equispaced from the surfaces of neighbouring rolls and
directed opposite to the movement of the powder mixture. The y-axis is horizontal and runs through the
centres of the neighbouring rolls. The z-axis is perpendicular to the pattern plane. The thickness of the
rolls (dimension along the z-axis) is H.

Sealing area Feed area

Extrusion area
Figure 2. Operation mode of a roll compactor

The limit state of the mixture for all areas will be described by the equation [5]
1 2 1. 2
Z(Gy - Gx) + riy = Zsm2 S(Gy +0,+ 2kctg6) .

ey

Here oy, ©, are the axial components of the stress tensor; 1., is the shear component of the stress tensor;
0 is effective angle of internal friction; & is the inter-particle cohesion parameter.
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The condition of plain strain is also fulfilled for all areas. Namely, the axial strain corresponding to
the z-axis (g, = 0) and the shear strains in the xz and yz planes are equal to zero.
The axial component of the stress tensor z is related to the values of o, and o,

c, =u(0x+0y). ®)]
Here is the transverse strain coefficient (Poisson’s ratio) of the material. In the Katashinski—Stern model,
the average axial stress is expressed as follows

G:%(Gx+Gy+02):%(1+u)(5x+0y)- 3)

This value corresponds to the actual hydrostatic pressure.

To keep the elegance of analytical relationships derived from the Johansen model, we use the ap-
proach proposed in paper [7]. Namely, we determine a thin layer of powder mixture by two planes par-
allel to the yz plane and placed at a small distance dx = R -d0 from each other. We replace the real values
of the axial stresses oy, G, with their y-coordinate averaged values Gy, Gyay, Which will not depend on y.
Let us use the averaged stress components in generating the equilibrium equations of the elementary
layer. Without repeating the transformations described in detail in the paper [7], we give only two rela-
tions obtained in this paper. The equilibrium equation in projections on the x-axis appears as the equality

—dzgav (I1+s—-cosB)+0o,,, sinb=psind— T/ €OS 0. “

Where p, trare normal and shear stress acting on the layer from the surface side of the roll; s = 2/(2R) —
design value introduced for brevity of further entries.

The equilibrium equation for the part of elementary layer in projections onto the y-axis can be trans-
formed to the form

Oyay =P +7,180. )

In the paper [7] the transition to the averaged components of the stress tensor is not explicitly spec-
ified. However, the equations (4), (5) are composed exactly for the averaged components, which do not
depend on the y-coordinate.

The structure being considered and its loading mode are symmetrical against the xz plane.
Consequently, the shear stress value t,, averaged over the y-coordinate is zero ty,,, = 0. Using jointly
relations (1) and (3) for the averaged axial components of the stress tensor we obtain

o = 3(1—-sind) o, —kcosd, o = 3(1+sind)
2(1+p) g 2(1+p)

Equations (4)—(6) will be used for all three areas in the field where the powder is in contact with the rolls.

Let us consider each area separately.

Feed area. In the feed area the density of the powder mixture varies slightly and can be assumed
equal to the initial bulk density p,. Consequently, the mixture characteristics 6, pu and &, which in gen-
eral depend on density, can be assumed constant. In the feed area, Coulomb’s law is true for the shear
stress Ty on the roll surface

G,, +kcosd. 6)

T, =Jp. (7

Here f'is the coefficient of friction between the powder mixture particles and the roll surface. The value
of f generally depends on the density of the mixture. For the feed area, the friction coefficient takes the
value f;, corresponding to the density py,.

For characteristics 9, p and f'of most known mineral fertilizers the experimental dependence on den-
sity is known and given, in particular, in the paper [S]. The dependence on average axial stress is more
often used [5] for the inter-particle cohesion parameter

k=co+c. @)

Here ¢, ¢ are constants determined by approximation of the experimental dependencies. If baking and
caking effects can be neglected for a given material, then ¢y = 0. Later on we will only use the constant c.
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In the feed area, the k value is taken as constant and corresponding to the maximum value of the
average axial stress o, for this area, which is achieved at 0 =y

ky, =co,. )
Using relations (5)—(7) and making mathematical transformations, we obtain the differential equa-
tion for the averaged hydrostatic pressure

do,,
do
In equation (10), for brevity, the functions of angle 0

=040 (0) + w,6,0,, (6). (10)

0,,(6) = (1+sin E?b )(sinB — f; cosB) <o 1 ’
(1-sindy)(1+ f,,tg0) 1+s—cosB an
00(0) = sm@—fbcos9+8ine 1 ’
1+ f,tgb 145 —cos6
and combination of constants are given
2(1+ py )ccosdy,
3(1-sindy)

Here 6y, Wy, are the values of the powder mixture characteristics corresponding to the bulk density py,.
According to the first equality (6), the value of the average axial stress co at angle 6 = a. is given by
the relation
2(1+ py )(pg +co, cosdy)
G, = .
* 3(1-sindy) (12)

The value of the angle o limiting the contact area between the powder mixture and the roll surface is
determined from the continuity of the pressure gradient, which is zero outside the contact area

PGy (@) + co, 088y, (O, () + Oy, (1)) = 0. (13)

To determine the angle a from this equation with a non-zero value of the coefficient ¢ and an un-
known value o, is impossible. The value o will be determined during considering the sealing area.
The solution of differential equation (10) is

630 (0) = {ca - wbcyTQZb@exp(Tle(mdn]dc]exp[—(f Qu,(n)dn} (14)
0 ¢ 0

Knowing the function c,,(0), we determine the angle 6 dependence of the averaged axial stresses on
the formulas (6) and (2). The material characteristics 9, L, k take the values oy, L, and k. Using relations
(5) and (7) together for the values p and 1, we obtain

_ O © 0)= /. p(6 15
+—g’ T/ ( )= Jfop(0). (15)

Sealing area. In the sealing area, the mixture density increases from py, to the final flake density pg.
In order to keep the possibility of obtaining relatively simple analytical relations for this area, we use
one of the basic assumptions of the Johansen model relating to the power law dependence of the average
axial stress on the density

o ~pk. (16)

Here K is the compaction ratio in the Johansen model, which is a characteristic of the powder mixture.
Using assumption (16), a differential equation [4, 7] can be derived for the average axial stress in the
sealing area

do,,

do

=G, 0(0). 17)
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An angle function 0 is introduced here

1+s—2cosO
1+s—cos0

0(0) = Ktg0 (18)

The boundary condition for the average axial stress in the sealing area follows from the require-
ments of stress continuity ¢ and gradient do/d in the transition from the feed area to the sealing area
(6 =v). Initially the gradient continuity condition is drawn up

O (V) + W, Oap, (1) = O(V)- (19)

Solving this non-linear equation, we determine the angle y. According to the function (14) taking
into account relations (12) and (13) at a known value y we set up expression for voltage o,

Opp ()

From this non-linear equation we find out the angle a.. Then from the equation (13) we find out G,

wb{1—Tsz@)exp(Tle(n)dnjdc}—exp( [ le(mdn}wb(uw} 20)
Y 4 Y

_ P () ) 21
Oy ccosd, (le (o) + Oy (0‘)) ()

Knowing y and c,, the solution of the differential equation (17) is as follows

60 () =0, exp(—fQ(n)dn} @)
0

With a known function c,,(0), the ratio (16) allows determining the dependence of the mixture den-
sity on the angle 0

0 1/K
p(0)=py L"G—()] - 3)

Y

When using relations (2) and (6) to determine the averaged axial stresses in the sealing
area, the density functions 6,, u,, f, must be substituted for the specific values of characteristics
d, W, f- In accordance with the equality (23) these dependencies can be presented by functions of angle 6:
8, =0(p) = 8(p(6)) = 5(6) = .

The function corresponding to the inter-particle cohesion parameter ky is defined according to (8) at
co=0: ky =k(8) =co,, (0). Thus, in the sealing area the axial stresses are given by the relations

3(1—-sindy) 3(1+sindy)
2(1+pg) 2(1+ )

As noted above, Coulomb’s law for the shear surface stress 1, is not met in the sealing area.
Therefore, we use relations (4) and (5) to determine the surface distributed forces p and 1, with known
functions G,,,(0) and ,,,(0). After performing mathematical transformations we obtain

dc . (0)
do

G (0)=0, (9)( —ccos 8} Cav(B) =0, (6)( +ccos 8} (24)

T7(0) = (0,4, (0) — 0, (0))sinBcos 6 -

P(0)=0,,(60) -7, (O)tgb.

The roll compactor is designed in such a way that ensures the required flake density value py.
Therefore, the value of the compaction factor z = py/py, z is a given one.

Knowing z and using the relation (16), the value of the average axial stress at the transition to the
extrusion area (6 = B) can be determined

(I+5—cos0)cosH,
(25)

oy =c,z". (26)
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To ensure the continuity of the mixture flow, an inverse relationship must be maintained between
the density pgin a given cross-section and the elementary volume Vj, corresponding to that cross-section

po ~ 1/Ve. (27)
Here the elementary volume is defined by the ratio
Vo =(hy +2R(1—cos0))Hdx = (1+ s —cos 9)2R2H cos 6d0. (28)
We use the ratio (27) taking into account (28) for the cross-sections 0 =y (p,) and 0 = (pg)

Py _ (I+s—cosP)cosp
P4 (1+s—cosy)cosy

(29)

Let us solve the equation (29) with respect to the angle 3

Bzarccos[H—s[lJr\/l— 4cosy (l_cosy)ﬂ‘ (30)
2 z(1+s) l1+s

Formulas (26) and (30) can be considered as boundary conditions for the extrusion area.

Extrusion area. Within this area, the density of the object to be compacted remains unchanged and
is pg. Therefore, the characteristics 8, 1, f'and & take the values 94, [, f3 and k4 corresponding to pgy. In
this case kg = cog. Coulomb’s law is fulfilled for the contact stresses p and t,in the extrusion area

T, =—Jp. 3D

The minus sign in the last equation reflects the change in direction of the shear contact stress com-
pared to the feed area.

Performing the same transformations as for the feed area, we obtain a differential equation similar
to (10)

do,,
do

The functions Q14 (0) and Q4 () are defined by the relations

=0,y014(0) +w4050,4(0). (32)

Lt si :
0,4(0) = (1+sin E‘?d)(sme + fqcos6) sin 1 ’
(1-sindy)(1— f;tg0) 1+s—cos0
10 0 (33)
04(0) = sin O + f4 cos T sin® 1 .
1+ f;tg6 1+s—cos0
Similarly to the feed area, a combination of characteristic values is also entered
2(1+pg)ccosdy
3(1-sindy)
The solution of equation (32) taking into account the boundary condition c,,(B) = op is
B B B
Gy (0) =05 | 1=wy [ Orq(Q)exp| [OQyq(n)dn |dC |exp| —[ Qjq(n)dn |. (34
0 4 0

As noted above, in the absence of extrusion, the averaged axial stress c,,,, when the flake leaves the
contact with the roll (8 = 0), is zero. Consequently

G = Oy (0) = wyop.

By writing down the function (34) for 6 = 0, we obtain the following equation (34)
Wd ’

B B B
[024(©) exr{ | Qld(n)danC + eXP[IQld(n)dnJ - L 35)
0 4 0

If the density of the flake is given, then the equation (35) is used to determine the design parameter
s that provides the required compaction factor z.
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An example of the calculation method application. As an example of the application of the de-
veloped mathematical model we consider the process of compacting the urea with rolls of radius
R =0.04 m and thickness H = 0.03 m. In the absence of additional feed pressure the value of py is taken
as equal to 0.1 MPa. For this process, the experimental data are given in paper [5].

The experimental dependencies [5] of the internal friction angle tangent tgd, transverse strain fac-
tor n and external (with roll surface) friction coefficient f on powder mixture density in the range from
Pp = 1.0 kg/m? to ppax = 2.1 kg/m? will be approximated by the function

0.5
A A(&J N B(&j
Pmax ~ Pb Pmax ~ Pb

Here 4, B are least-squares approximation coefficients. Ratios similar to (36) are also written down for
tgo and f.

The results of the approximation are shown in the Table 1. The table 1 also shows the values of cor-
relation coefficients y of the experimental values and the results of using the functions (36) to assess
the accuracy.

The coefficient determining the growth rate of the inter-particle cohesion parameter is ¢ = 0.29. The
compaction index K for the Johansen model is determined by approximation of the experimental depend-
ence of density on average axial stress p(c), given in [5], in the range of densities from py, to pay. The value
was K = 8.32 with correlation coefficient y = 0.82.

Let us use the developed model to calculate
the design parameter s for given flake density pg in
the range of 1.5 to 2.1 kg/m>. At the same time five
functions Qy,, Oz, O, O14, 024 of the angle 6 and

(36)

Table 1. Approximation results of the
experimental dependencies of the powder mixture (urea)
characteristics on density

the required parameter s are initially made using | oeecterstc | p=py 4 5 L

the formulas (11), (18) and (33). Then non-linear € 052 | —0.20 | 050 | 092
equation (19) is solved and the angle y is found out [~ 0.21 0.12 0.20 0.89
as a function of the parameter 5. Then the func- A 0.16 —0.08 ~0.03 096

tion B(s) is defined by formula (30). Once done,
non-linear equation (35) is solved and parame-
ter s is found out.

Figure 3 shows the results of the calculations
and their comparison with the experimental rela-
tionship borrowed from paper [5]. An acceptable
accuracy of the calculated estimates can be noted.

By determining the parameter s at a given val-
ue of sealing coefficient, the values of angles y and

B can be calculated in accordance with the devel- ~
oped model. After that by solving the non-linear 1 .~ -
equation (20) we determine the angle a.. Under the

. . 107
formula (21) we calculate the tension c,, and using 15 | : ; : ; : 0

the formula (26) we calculate og. Table 2 shows 4 8 12 16 20
the calculation results of the above-mentioned pa-

Figure 3. Dependence of the sealing factor z on the relative

rameters of compaction process for the analyzed
process at z = 2.07. Parameter s = 0.00434.

The values given in the table and the param-
eter s are sufficient to establish an explicit form
of dependence of the average axial stress on the
angle for the feed, sealing and extrusion areas, re-
spectively, using the basic data from the formulas
(14), (22) and (34). Then, in each area, the depend-
encies on the averaged axial stresses 0 are deter-
mined. In addition, the functions p(0) and t/(0)

(referred to the roll’s diameter) thickness of the gap between

the roll surfaces. The block curve — experimental dependence

from [5]; the dashed curve — calculated dependence obtained
using the developed model

Table 2. Resultsof calculating urea rolling
parameters at 7 =2.07
Boundary o % B
Angle, degree 18.52 10.96 4.09
o, MPa 0.12 0.25 112.91
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are determined also. For this example (urea at z = 2.07) the normal contact pressure stress diagram is
given in paper [5]. Figure 4 compares this stress diagram with the results of the developed model. As
for the graphs in Figure 3, we can speak about acceptable accuracy of the contact pressure prediction.
The slightly lower estimates for the sealing area are due to the use of assumption (16) borrowed from
Johansen’s model.

P, 90 T
MPa

75

60

45
30
15
0 == 2= e o= o= o
15 18
0, angle

Figure 4. Dependence of normal pressure p on the roll on the angle 6 while urea compacting at
sealing factor z = 2.07: block curve — experimental dependence from [5]; dashed curve — calculated
dependence obtained using the developed model

Conclusion. A mathematical model of mineral fertilizer compacting using a roll compactor is de-
veloped. Unlike the previously used Johansen model, it allows to take into account comprehensively the
presence of three non-zero axial stresses in a powder mixture, the influence of inter-particle cohesion
and its dependence on hydrostatic pressure, changes of mixture characteristics when density changes,
the presence of three characteristic areas (feeding, sealing and extrusion), where the mixture contacts
the roll. The model developed enables to derive relatively simple analytical relationships for the parame-
ters that determine the power load of the material to be compacted and of the rolls. The calculation is the
solution of three non-linear equations, followed by the use of the derived functional relationships. Within
the framework of the developed model, it is possible to establish the dependence of the sealing factor on
the relative gap between the roll surfaces. Previously while designing, the corresponding experimental
dependencies were used. Comparison of the usage results of the model with the empirical z(s) relation-
ship for urea showed acceptable accuracy of the evaluated estimates calculated. Slightly overestimated
gap values for small (up to 1.7) sealing coefficients are due to the neglect of backing and caking effects
(the inter-particle cohesion parameter is assumed to be zero in the absence of hydrostatic compression),
and using the hypothesis of a power-dependence of hydrostatic pressure on density in the sealing area
(Johansen model assumption). The same assumptions lead to slightly underestimated pressure on the roll
from the material being compacted. In this case, the calculated diagram of this pressure describes the
known experimental data for the urea compaction with an acceptable accuracy.
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