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Abstract. The paper presents the results of research and development of a methodology for optimizing parameters
of tracking estimators for object coordinates and motion parameters. The methodology is based on a comprehensive
approach to training dataset formation considering various types of object motion and application of specialized optimization
algorithms. The developed algorithms implement a complete optimization cycle, including training dataset formation,
data preprocessing, parameter optimization, and verification of obtained results. The results of practical application
of the methodology for optimizing parameters of non-adaptive Kalman filter and Interacting Multiple Model (IMM) filter
under various observation conditions and object motion patterns are demonstrated. Based on simulation modeling, it is shown
that the application of the developed methodology significantly improves the accuracy of estimating coordinates and motion
parameters compared to traditional approaches to parameter selection. Special attention is paid to studying the stability
of obtained solutions to changes in observation conditions and object motion patterns. The obtained results are advisable
to use in development and modernization of radar data tracking systems, air traffic control systems, air and ground situation
monitoring complexes, as well as in other applications requiring high-precision estimation of object motion parameters under
a priori uncertainty.
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OBOBHIEHHAA METOAUKA OITUMHN3AIIUU TAPAMETPOB
TPAEKTOPHBIX UBSMEPUTEJEN KOOPIUHAT Y TIAPAMETPOB JIBUKEHMU S
B CUCTEMAX MOHUTOPHAHIA BO3JYIIHOM U HASEMHOM OBCTAHOBKHA

AnHoTanus. [IpencraBieHs! pe3ynbTaThl pa3pabOTKH U NCCIeJOBaHMS 0000IEHHON METOAUKY ONITUMH3AIINH TTapaMe-
TPOB TPACKTOPHBIX M3MEPUTENEi KOOPIANHAT U NMApaMEeTPOB JIBHIKEHHS B CHCTEMaX MOHHUTOPUHIA BO3AYLIHOW M HAa3eMHOIl
00cTaHOBKH. MeToquKa OCHOBaHa Ha KOMIUIEKCHOM IOIX0/1€ K (JOPMHUPOBAHNIO 00ydaloIei BHIOOPKH C yIETOM Pa3JInIHBIX
Mozieneil ABUKEHN s 00BEKTOB U MPUMEHEHUH CIEUANIN3MPOBAHHBIX alTOPUTMOB ONTHMH3anuu. PazpaboTaHHBIE adTOPUT-
MBI PEaTH3yIOT ITOJHBIH IIUKJI ONTHMH3ALNH, BKIII0Yast POpMUpOBaHKE 00yyJalommeil BEIOOPKH, IIPeABAPUTEIBHYI0 00paboT-
KY BXOJHBIX JaHHBIX, COBEPIICHCTBOBAHNE MAPAMETPOB 1 BEPH(UKAIHIO MOy IEHHBIX Pe3ynbTaToB. [IpogeMoHCTpHpOBaHEI
pe3yJbTaThl HPAKTHYECKOr0 TPUMEHEHHU ST METOAMKH /ISl HACTPOWKH IapaMeTpoB HeananTuBHoro ¢uisrpa KanMana u Muo-
rOKaHaJIBHOTO aganTuBHOrO ¢uisrpa (Interacting Multiple Model, IMM) npu pa3iuYHBIX YCIOBUSX HAOTIONECHUS U XapaK-
Tepe ABMKeHUs 00beKkToB. Ha 0CHOBE MMUTALIMOHHOTO MOJICIMPOBAHHUSI [TOKA3aHO, YTO IIPUMEHEHHE pa3paboTaHHOU MeTo-
JUKU TI03BOJISIET CYNIECTBEHHO MOBBICUTH TOYHOCThH ONCHHBAHUS KOOPIUHAT W MAapaMeTPOB JABHIKEHUSI OOBEKTOB IO CpaB-
HEHUIO C TPaAMLIMOHHBIMU MOAX0AAaMH K BbIOOpY MapaMeTpoB. Oco6oe BHUMaHHE YAEIEHO UCCIEJOBAHHIO YCTOHYMBOCTH
TIOTYUYESHHBIX PENIeHUI K M3MEHEHHIO YCIOBUII HAONIONEHNUS U XapaKTepa JBMKEHUs! 00beKkToB. [losrydueHHbIe pe3ysIbTaThl
11e1ecO00pa3HO UCIOIB30BATh MPH pa3pabdOTKe U MOJCPHUBALNH CUCTEM TPACKTOPHONH 00pabOTKU painOIOKAIIMOHHON HH-
(dopmaruy, B cucTeMax yIpaBJIeHHUs! BO3IYIIHBIM JBI)KCHHEM, ITPH CO3IaHUH KOMIIEKCOB MOHHTOPHHTA Ha3€MHOU U BO3-
JTYIIHOH 00CTAaHOBKH, a TAKXKE B APYTHX MPUIOKEHHUSX, TPEOYIONNX TOYHOTO OIIEHUBaHMS KOOPAUHAT U TTAPAMETPOB JBHU-
JKEHUsI 0OBEKTOB B YCIOBHSIX allpHOPHOH HEONPeIeICHHOCTH.

KuroueBbie cjioBa: TPacKTOPHBIN H3MEPUTEINb, ONTUMHU3ALHS TapaMeTpoB, puibTp Kanmana, IMM-dunerp, ManeBpH-
pyromnii 00beKT, 00yyaromas BpIOOpKa, alPUOPHAst HEOMPEAEICHHOCTh, TOUHOCTh OLICHUBAHHU S
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Introduction. The optimization of tracking estimators for coordinates and motion parameters is one
of the key challenges in modern air and ground situation monitoring systems [1-4]. This task becomes
particularly relevant when tracking maneuvering objects, where high estimation accuracy is required
under conditions of a priori uncertainty in object motion patterns [6, 7]. Recent years have seen signifi-
cant progress in the development and improvement of trajectory filtering algorithms [2, 5, 7, 8]. Modern
approaches allow for substantial improvement in motion parameter estimation accuracy through the use
of adaptive and multiple-model methods. However, the selection and tuning of estimator parameters
that determine their performance under various operating conditions remains a crucial issue [3, 7, §].
Despite significant achievements in this field, existing approaches to tracking estimator optimization
have several limitations: complexity in accounting for a priori uncertainty of various models of object
motion; insufficient development of comprehensive estimator parameter optimization; and difficulties
in practical implementation of the proposed optimization algorithms. This paper presents a method for
optimizing tracking estimators aimed at overcoming these limitations. The method is based on a syste-
matic approach to training dataset formation and the application of specialized optimization algo-
rithms that consider the specifics of both non-adaptive and adaptive estimators. Special attention is paid
to the practical feasibility of the proposed solutions.

The aim of this work is to improve the accuracy of estimating coordinates and motion parameters
of objects by optimizing tracking estimator parameters while accounting for a priori uncertainty
in the motion patterns of observed objects.
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Generalized Technique for Optimizing Tracking Estimators. The developed technique for opti-
mizing tracking estimators represents a seven-stage process that provides a systematic approach
to solving the parameter tuning problem for estimators of coordinates and motion parameters of various
object classes.

The first stage involves initial data formation, including specification of observed object classes
and their motion models. In air and ground situation monitoring systems, various object classes can
be observed [1, 7]: aerial (including aerodynamic aircraft, helicopters, unmanned aerial vehicles), ground
(cars, trucks, people) and false objects. Each class is characterized by its specific motion models that
are incorporated into the multi-channel IMM filter structure. This takes into account limitations
on the estimator structure, selection of possible parameter ranges for tracking filters for each object
class, and determination of estimation quality criteria, such as root mean square (RMS) errors of coor-
dinates and motion parameters.

The second stage includes preparation of the training dataset by generating typical trajectories for
each object class. During dataset formation, various motion scenarios are simulated [1-4, 7]: straight-
line uniform motion, movements with maneuvers of varying intensity, motion with velocity changes
and other. An important aspect is the integration of real experimental data and simulation of primary
sensor measurement noise considering their actual characteristics.

The third stage involves optimizer setup, which includes formalization of the objective function
as RMS estimation error minimization, definition of constraints on optimized parameters, selection
of initial search points, and tuning of optimization algorithm parameters [9]. Special attention is paid
to defining optimization process stopping criteria.

The fourth stage is dedicated to direct optimization of the estimator structure. During this stage,
the optimal number of channels for each object class is determined, and filter types are selected for
the channels [1, 4]: linear Kalman filters of various orders, quasi-linear filters, nonlinear filters, and spe-
cialized filters such as the Singer filter. Individual filter parameters are tuned, and in the case of IMM
(Interacting Multiple Model) structure, the transition probability matrix between channels is optimized,
and their interaction algorithms are configured.

The fifth stage provides validation of obtained results by testing solutions on a test trajectory dataset.
Solution stability is evaluated under various conditions, including different initial conditions, maneuver
types, and measurement noise levels. Computational cost analysis and comparative analysis with base-
line estimator variants are performed.

The sixth stage involves forming recommendations, including compilation of optimal parameter
tables for various object classes, determining solution applicability conditions, developing practical
implementation recommendations, and evaluating expected accuracy improvements for various applica-
tion conditions.

The final seventh stage includes adaptive algorithm implementation, which involves software imple-
mentation of the optimized structure, configuration of inter-model interaction mechanisms, implementa-
tion of parameter adaptation algorithms, and real-time testing followed by result documentation.

Practical Implementation of the Technique. Measuring object angles is one of the key tasks
in air and ground situation monitoring systems [1, 2, 4]. As a practical example, the task of tracking
a maneuvering aerial object using only angular measurement information from a stationary direction
finder was considered. In this single-sensor configuration, it is impossible to directly reconstruct the full
spatial coordinates of the object, making the problem particularly challenging. The initial conditions
are characterized by the following parameters: the RMS error of bearing measurement is 1 degree, with
a data update interval of 10 s. During model experiments, trajectories were considered where the aerial
object moved at a constant velocity of 220 m/s at an altitude of 1 km. Between the 32 and 41 scans
of the direction finder, the object performed a steady turn in the horizontal plane at angles of 180, 270,
and 360 degrees with normal acceleration n, = 1.1, 1.5, and 2.0, depending on the specific trajectory.
As shown in Figure 1, all trajectories are characterized by significantly nonlinear bearing change pat-
terns. These strong nonlinearities in bearing measurements require approximation using high-order
polynomials and create additional challenges for filtering algorithms [2, 4].

At the first stage of the study, a direct parameter search was conducted for a non-adaptive Kalman
filter [1, 7, 8]. This approach, while conceptually straightforward, proved to be computationally intensive
due to the need for exhaustive search across the parameter space. Figure 2 shows the dependence
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Figure 1. Trajectories and bearing change patterns for model experiments: trajectories /-3 — with 90°,
trajectories 4—6 — with 180°, and trajectories 7—9 — with 270° turns, each set at normal accelerations n,= 1.1, 1.5, and 2.0
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Figure 2. Dependence of total bearing filtering error on polynomial order and RMS random maneuver value

of the total bearing filtering error (averaged over all selected object trajectories) on the polynomial order
and RMS random maneuver value. Analysis of the results revealed a complex multi-modal nature
of the error surface, with several local minima, making the optimization process particularly challenging.
Nevertheless, it was found that there exists an optimal combination of these parameters that provides
minimal filtering error.

Further optimization of the Kalman filter was conducted using the developed technique. For this
purpose, an algorithm based on the Pattern Search method was implemented [9]. The algorithm search-
es for optimal values of two key Kalman filter parameters: polynomial order N, and random maneuver
standard deviation c,,. The distinctive feature of the implemented algorithm is its adaptive search step
and extended set of parameter space exploration directions, including both primary and diagonal di-
rections. The search is performed within the space of permissible values, where the polynomial order
varies from 1 to 5, and om ranges from 10~ to 107, The optimization process starts from an arbitrary
point (N, = 1, 6, = 10®) and sequentially improves the solution by minimizing the root mean square
error of bearing filtering. To enhance computational efficiency, result caching is implemented, which
helps avoiding repeated calculations for previously investigated parameter combinations. As shown
in the graphs in Figure 3, the optimization process demonstrates stable convergence. After approximately
30 iterations, optimal parameter values are achieved: N, = 2 and 6, = 3.9 - 107®. With these para-
meters, the RMSE of bearing filtering is minimal at about 0.7 degrees, which is 30 % lower compared
to the non-optimized filter.

The effectiveness of the optimized filter is confirmed by the results of filtering real trajectories
(Figure 4), where significant improvement in bearing estimation quality is observed, especially in the object
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Figure 4. Comparison of non-adaptive filtering results for non-optimized and optimized filters

maneuvering region (from scan 32 to 41), with the optimized filter (magenta line) demonstrating superior
tracking performance and better measurement noise suppression compared to the default filter (green
line) throughout the entire trajectory.

IMM filter is one of the most effective adaptive filtering algorithms due to its ability to dynam-
ically combine results from multiple motion models [1, 3, 4]. This enables high estimation accuracy
both during uniform motion and various object maneuvers. However, tuning IMM filter parameters
represents a complex optimization problem due to the large number of interrelated parameters and their
nonlinear influence on filtering quality. The IMM filter includes three channels [1, 3, 4, 6, 7]: first- (con-
stant velocity — CV) and second-order (constant acceleration — CA) Kalman filters, and a first-order
Singer filter. The following parameters were optimized using genetic algorithm: o, — RMS random
maneuver for CV filter (from 10°° to 107%); 6ca — RMS random maneuver for CA filter (from 10°°



Becui HamnpisinanpHaii akagpmii HaByk bemapyci. Cepbist ¢dizika-Toxuiunbsix HaByK. 2025. T. 70, Ne2. C. 159-165

164 Proceedings of the National Academy of Sciences of Belarus. Physical-technical series, 2025, vol. 70, no. 2, pp. 159-165
Standard deviation of random Standard deviation of random Standard deviation of random
x10°  ‘maneuver (constant velocity) x10"” maneuver (constant acceleration) o maneuver (Singer model)
Om, Om, m
073
o /Sz ° /53 ‘_ /s
4 1
3.5
35 - L/
3 0.8
3
25 25 L 0.6
o 4
2 2 0
0 20 40 60 80 100 0 20 40 60 80 100 02 0 20 40 60 80 100
Generation number Generation number Generation number
Correlation time (Singer model) Probability of filter model transitions Filtering error
|
S dik o
70 0.89f+ 0.69
0.88 0.68
60
0.87 0.67
50
0.86 0.66 | —
40 0.85 0.65 -\
30 0.84 0.64
0 20 40 60 80 100 0 20 40 60 80 100 -0 20 40 60 80 100
Generation number Generation number Generation number
Figure 5. Illustration of the adaptive IMM filter optimization procedure
Trajectory 1 Trajectory 2 Trajectory 3
12 1.2 | Measurements
Measurements Measurements 1 T SO W\ —A
| T —A 1A= Aty \ o \ %
y y ilter
08 \‘—\/\,wo-ﬁdv,l‘w 0.8 \ [CAfiter Y D 08 \\"‘-W gt:,./wv
S o) S
g o6 \\ 06 VN gos \_
2 oo 2, : ~
0.4 IMM filter 04 IMM filter 04 MM filter
0.2 0.2
0.2
09 20 40 60 80 0p 20 40 60 80 20 40 60
Measurement number Measurement number Measurement number
Trajectory 4 Trajectory 5 Trajectory 6
Measurements 1.2 “| T 1.2 .
1 b i e\ ~— ments
UB 1 v _vA >y 1 I\ A MWA '_.A‘ A\ o
y Op Op
CA filter N ) §
§_’0.8 \\_4\' N S ———— %0.8 \ _CA filter A,\ o 08 \\;f: filter A/\
()
S ‘ v { S
g 06 ! 50.6 == ;0.6 ! -
0.4 - o4 o4 )
IMM filter IMM filter IMM filter
0.2 0.2 0.2
0
0 20 40 60 80 0 20 40 60 80 100 0p 20 40 60 80 100
Measurement number Measurement number Measurement number
Trajectory 7 Trajectory 8 Trajectory 9
1.2 ociry 12 fectry 1.2 fociory
Measurements Measurements M ments
1 N — 1 horrada NP Y 1 oo A
CA filter ﬂ ’ CA fil o CA filter /\ %
20.8 “MNM‘ A 20.8 Sl 208 '
8 \ S N’;\"f’: 8 \ ——
LN v LN LN
\'s \'q x
0.4 - 0.4 04
IMM filter IMM filter IMM filter
0.2 0.2 0.2
0020 40 60 80 100 0020 40 60 80 100 0020 40 60 80 100

Measurement number

Figure 6. Comparison of optimized filtering algorithm results

Measurement number

Measurement number



Becui HaupisinanbHait akagamii HaByk benapyci. Cepbis ¢izika-TaxHiuHbIX HaByK. 2025. T. 70, Ne2. C. 159-165
Proceedings of the National Academy of Sciences of Belarus. Physical-technical series, 2025, vol. 70, no. 2, pp. 159-165 165

to 107%); Osinger — RMS random maneuver in Singer model (from 0.1 to 2.0); t,, — maneuver time constant
(from 30 to 90 s); p — probability of IMM filter model transitions (from 0.8 to 0.95). The algorithm
features adaptive mutation, logarithmic scaling for 6y and o, elitist strategy, and tournament selec-
tion. As shown in Figure 5, the optimization converges after approximately 50 generations, yielding
optimal values: 6y = 2.8 - 107% 6, = 1.5+ 107; 000 = 1.2: 1, = 45 53 p = 0.92.

Comparative analysis results (Figure 6) show that the optimized IMM filter provides: 40 % reduc-
tion in root mean square error of bearing estimation compared to the non-adaptive Kalman filter; faster
adaptation to object maneuvers; stable operation under various types of maneuvers; shorter transient
response time during changes in object motion patterns. The Figure 6 presents nine different trajectory
scenarios 1-9, each showing the comparison between measurement data (blue line), IMM filter perfor-
mance (red line), and CA filter performance (green line, using optimal parameters previously obtained
in Figures 3 and 4 for the non-adaptive case). All RMS error values were calculated by averaging results
over 5,000 Monte Carlo runs to ensure statistical significance of the comparison. The IMM filter con-
sistently demonstrates lower RMS errors during steady-state periods compared to both raw measure-
ments and the CA filter. During maneuver periods (visible as spikes in the plots around 400 s), the IMM
filter shows temporary increase in RMS error but recovers more quickly than the CA filter. The CA filter
maintains a relatively stable error level but fails to achieve the same level of accuracy as the IMM
filter during both steady-state and maneuvering periods. Trajectories 7—9, which represent the most
complex maneuvers (270° turns), show the IMM filter’s superior ability to handle challenging scenarios
while maintaining stable performance. The measurement noise level (approximately 1 degree RMS)
is effectively filtered by both algorithms, with the IMM filter achieving better overall performance,
especially during the post-maneuver settling period. The time scale extends to 800—1,000 s, providing
sufficient duration to observe both transient and steady-state behavior of the filtering algorithms across
various maneuver scenarios.

Conclusion. This paper presents a practical implementation for optimizing tracking estimators
of coordinates and motion parameters in air and ground situation monitoring systems. Key research out-
comes include development of a multi-stage optimization technique for both non-adaptive and adaptive
estimators, implementation of a pattern search optimization algorithm for non-adaptive Kalman filter
(achieving N, =2 and 6, = 3.9 - 107*), and development of a specialized genetic algorithm for IMM
filter optimization (achieving 6cy = 2.8 - 107, 60, = 1.5 - 107, 600 = 1.2, 7, = 45 5, p = 0.92).

Model experiments with various aircraft trajectories (180°, 270°, and 360° turns with load factors
n, = L1, L5, and 2.0) confirmed the effectiveness of the developed methodology, demonstrating improved
motion parameter estimation accuracy, better adaptation to object maneuvers, stable operation under
various motion models, and reduced transient response times. Future research directions may include
extending the methodology to other types of measurement information and observed object classes.
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