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АНАЛИЗ ТЕХНОЛОГИЙ ПРОЕКТИРОВАНИЯ  
И СОЗДАНИЯ ДВУХФАЗНЫХ ТЕРМОСИФОНОВ ДЛЯ СИСТЕМ ОХЛАЖДЕНИЯ12

Аннотация. Выполнен краткий анализ актуальных разработок, исследований и применения двухфазных тер-
мосифонов в технике. Наиболее актуальным в данный момент является поиск перспективы применения термоси-
фонов для охлаждения электроники (силовой и микроэлектроники). При этом рассмотрены и другие возможности 
использования данного теплообменного элемента: стабилизация температуры почвы, консервация вечной мерзло-
ты, охлаждение теплонагруженного оборудования, в составе систем кондиционирования теплообменников, а так-
же в атомной промышленности. Особое внимание уделено выбору рабочей жидкости и поиску оптимального ко-
эффициента наполнения устройства, способам интенсификации теплообмена и влиянию конструкции термосифона  
на его производительность. 
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ANALYSIS OF TWO-PHASE THERMOSYPHON DESIGN AND CREATION TECHNOLOGIES  
FOR COOLING SYSTEM APPLICATIONS

Abstract. A brief analysis of current developments, research, and applications of two-phase thermosyphons in engi-
neering is provided. The most relevant application of thermosyphons today is electronic cooling. (power and microelectron-
ics). Other possibilities for using this heat exchange element were also considered: soil temperature stabilization, permafrost 
preservation, cooling of heat-loaded equipment, heat exchanger for air conditioning systems, nuclear industry. Working fluid 
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selection, optimal filling factor of the device, heat transfer intensifying methods, and the thermosyphon design influence  
on its performance were examined in detail. 
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Введение. Применение двухфазных термосифонов и тепловых труб в современных системах 
охлаждения позволяет обеспечить быстрый и эффективный отвод тепла и передачу его в зону  
теплосъема. Двухфазные термосифоны широко используются для систем охлаждения теплонагру-
женных объектов благодаря способности передавать высокие тепловые потоки на протяженные 
дистанции без механической прокачки, большому сроку службы, низкой стоимости. Различные 
типы термосифонов широко используются в промышленности, например, для охлаждения электрон-
ных устройств [1–4], солнечных энергетических систем [5; 6] и систем рекуперации тепла [7; 8].

Одним из предпочтительных решений при разработке систем охлаждения электронных ком-
понентов является использование двухфазных контурных термосифонов [9; 10]. В них реализу-
ется принцип пространственного разделения потоков пара и возвращающейся в зону нагрева 
жидкости, что позволяет значительно уменьшить термическое сопротивление таких устройств. 
Термосифоны этого типа применяются в системах охлаждения наравне с контурными и пульса-
ционными тепловыми трубами, классическими термосифонами и паровыми камерами. 

Двухфазные контурные термосифоны успешно используются для охлаждения элементов си-
ловой электроники. Данные по их работоспособности при различной геометрии и расположе-
нии в пространстве представляют практический и научный интерес для разработчиков новых 
устройств такого типа [11].

В [12] показано, что в стационарном режиме работы эффективность термосифона опреде-
ляется мощностью источника тепла, площадью конденсатора, температурным напором между 
рабочим веществом термосифона и охлаждающей жидкостью, теплофизическими свойствами 
охлаждающей жидкости. Предложенная автором математическая модель позволяет прогнозиро-
вать реакцию термосифона, работающего в стационарном режиме, на кратковременное увеличе-
ние мощности источника тепла. Правильно спроектированный термосифон должен учитывать 
соотношение площадей поверхности конденсатора и испарителя, а выбор рабочей жидкости про-
изведен с учетом скрытой теплоты парообразования, теплоемкости, теплопроводности, кинема-
тической вязкости и т. д. Согласно проведенным численным расчетам устройство устойчиво ра-
ботает в стационарном режиме и менее чем за 2 с возвращается в исходное состояние даже после 
больших возмущений. Кратковременное повышение тепловой нагрузки на испаритель на 10 % 
приводит к таким же кратковременным увеличению толщины пленки жидкой фазы на стенке 
конденсатора за счет возросшего массового расхода рабочей жидкости от испарителя к конден-
сатору и росту температуры пленки. После возвращения источника нагрева в стационарный ре-
жим толщина пленки менее чем за 2 с уменьшается за счет гравитационного гидродинамическо-
го стекания, при этом снижается и ее температура. Это важное качество термосифона, благодаря 
которому обеспечиваются надежные тепловые условия работы охлаждаемых объектов, чувстви-
тельных к перегревам.
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Термосифоны применяются для охлаждения устройств с очень широким диапазоном сбра-
сываемых мощностей. Например, в [13] предложен контурный термосифон, спроектированный 
в контексте теплового управления большим преобразователем мощности среднего напряжения 
общей мощностью 5 МВт, что соответствует тепловой нагрузке 2,4 кВт на единицу площади  
охлаждаемой поверхности.

Двухфазные термосифоны для охлаждения электроники. В настоящее время востребо-
ванным является охлаждение миниатюрных электронных устройств, а также повышение их инте-
грации и мощности. Такие устройства могут выделять значительный объем тепловой энергии 
при высоких плотностях теплового потока [14; 15]. Способ эффективного рассеивания тепла 
в ограниченном пространстве имеет решающее значение для развития электронных устройств [16].

Растущий спрос на миниатюрные электронные устройства с высокой плотностью сбрасываемых 
тепловых потоков привел к необходимости создания более эффективных систем охлаждения, 
способных отводить такие потоки от зоны нагрева. В то время как традиционные методы одно-
фазного охлаждения достигли своих пределов и не достаточны для удовлетворения растущих 
потребностей в охлаждении электронных устройств, современные двухфазные системы с про-
цессом фазового перехода используют скрытое тепло во время испарения. Это позволяет эффектив-
но рассеивать значительное количество тепла, сохраняя при этом относительно низкую темпе-
ратуру поверхности устройства. Тепловые трубы и термосифоны, использующие процесс фазового 
перехода, широко применяются в электронных устройствах в качестве распределителей тепла 
и представляют собой наиболее исследованные устройства для охлаждения электронных изделий. 

По мере уменьшения размеров этих устройств растут и запросы на более компактные и эф-
фективные теплоотводящие устройства. Длительное воздействие высоких температур на элек-
тронные устройства может привести к снижению производительности и возможному выходу  
их из строя, поэтому требуется поддерживать не только заданную температуру, но и изотермич-
ность зоны нагрева, не допуская локальных перегревов. Например, современные процессоры 
имеют возможность сохранять работоспособность при температурах до 100–110 °С, но для про- 
дления их срока службы и меньшего износа рекомендуется поддерживать рабочую температуру 
в пределах 85–90 °С. Поскольку размеры электронных устройств с каждым годом уменьшаются  
и их мощность возрастает, эффективное рассеивание выделяемого ими тепла становится все бо- 
лее сложной задачей [17], что увеличивает потребность в инновационных решениях для охлаж-
дения электронных устройств. Современные электронные платы содержат множество высоко-
производительных компонентов, таких как центральные процессоры (ЦП), графические про-
цессоры (ГП) и модули памяти, которые во время работы выделяют значительное количество 
тепла. Эффективное рассеивание тепла имеет решающее значение не только для поддержания 
оптимальной работы этих компонентов, но также для предотвращения сбоев, связанных с пере-
гревом, и продления срока службы электронных устройств [18].

Базовый принцип работы подобных устройств прост: тепловые трубки или термосифоны, 
которые зачастую используются в связках по несколько штук, забирают тепло от охлаждающей 
пластины, имеющей контактную площадку с тепловыделяющим устройством (ЦП/ГП), и пере-
носят его к ребрам радиатора. Тепловыделение современных процессоров составляет 100–250 Вт, 
графических процессоров (видеокарты) – до 450 Вт, при этом контактная площадка довольно 
мала (для процессоров – 15–25 см2) и плотности потоков достигают десятков ватт на квадратный 
сантиметр. Рассеивание тепла происходит, как правило, с использованием воздушного охлажде-
ния (вентилятора). Термосифоны могут отводить тепловую энергию на сравнительно большое 
расстояние, но не применимы, например, в мобильных электронных устройствах типа смартфо-
нов, где используются тепловые трубки или паровые камеры. Термосифоны позволяют прояв-
лять большую гибкость при проектировании конструкции испарителя и формы конденсатора. 

За последние несколько десятилетий было проведено множество исследований тепловых ха- 
рактеристик термосифонов. Так, экспериментально изучены особенности фазового перехода  
при теплопередаче и работоспособность двухфазного термосифона с различными рабочими  
телами и рифленой поверхностью испарения [19]. Было обнаружено, что вода как рабочая жид-
кость превосходит этанол с точки зрения эффективности рассеивания тепла, а рифленая поверх-
ность испарителя улучшает общую скорость теплопередачи. В более поздней работе [20] иссле-
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дователи представили осесимметричную двумерную модель тепломассообмена для плоского 
двухфазного термосифона в форме диска. 

Влияние рабочей жидкости и степени заполнения на работу термосифонов. Существует 
множество факторов, влияющих на эффективность теплопередачи термосифона, в частности 
коэффициент наполнения, тепловая нагрузка, перепад высот между конденсатором и испарите-
лем, тип рабочей жидкости и конструкция испарителя и конденсатора. Коэффициент наполне-
ния является одним из наиболее важных факторов, влияющих на эффективность теплопередачи. 
Слишком высокий или слишком низкий коэффициент наполнения ухудшает эффективность те-
плопередачи. В целом значение или диапазон коэффициентов наполнения, при которых дости-
гается наилучшая эффективность теплопередачи, определяется как оптимальный коэффициент 
наполнения [21; 22].

Выбор рабочей жидкости играет значительную роль в работе термосифонов, так как напря-
мую влияет на характеристики теплопередачи и эффективность системы. Различные рабочие 
жидкости имеют разные теплофизические свойства, такие как плотность, удельная теплоем-
кость, вязкость и поверхностное натяжение, что обусловливает тепловое поведение системы. 
Некоторые жидкости могут иметь высокий коэффициент теплопередачи, но при этом не подхо-
дить по температуре кипения или вязкости, которые могут повлиять на запуск и циркуляцию 
в термосифоне. Следовательно, выбор рабочей жидкости имеет важное значение для достижения 
оптимальных тепловых характеристик и соответствия желаемым условиям применения. 

Влияние рабочей жидкости на характеристики термосифона было экспериментально и чис-
ленно изучено во многих исследованиях с целью определения наиболее подходящей жидкости 
для конкретного случая. Так, в [17] описана сложная динамика теплопередачи и фазовых изме-
нений внутри термосифона плоской формы; изучается влияние различных рабочих жидкостей, 
коэффициентов наполнения и характеристик подводимых тепловых потоков на тепловые харак-
теристики системы; проведено моделирование явлений фазового перехода в осесимметричной 
модели термосифонов дискообразной формы. В данной работе предлагается использовать в тер-
мосифонах плоской формы самосмачивающиеся наножидкости, которые улучшают тепловые 
характеристики и предотвращают пересыхание за счет снижения температуры горячей точки 
(на 16 °С ниже по сравнению с водой). Результаты исследования показали, что самосмачиваю-
щиеся наножидкости имеют улучшенные возможности теплопередачи и сниженный риск вы-
сыхания в сравнении с традиционными рабочими жидкостями. Примечательно, что самосмачи-
вающиеся жидкости и самосмачивающиеся наножидкости изменяют поверхностное натяжение 
при повышении температуры, что эффективно предотвращает высыхание, притягивая жидкость 
к горячим областям. Кроме того, повышенная теплопроводность наножидкостей во время кипе-
ния дополнительно повышает их эффективность.

Авторы [23] исследовали рабочие характеристики двухфазного кольцевого термосифона в со-
суде высокого давления для моделирования рабочего состояния термосифона в системе охлаж-
дения с пассивной защитной оболочкой (рис. 1). В качестве рабочей жидкости использовалась 
вода (коэффициент заполнения 40–65 %), конденсатор был помещен в кипящий водяной бак  
при температуре 100 °C, а испаритель – в сосуд высокого давления, экспериментальный диапазон  
давления в котором составлял 0,32–0,46 МПа. При давлении в сосуде ниже 0,36 МПа наимень-
шее термическое сопротивление достигалось при более низких коэффициентах заполнения.  
По мере увеличения давления в сосуде более высокие коэффициенты заполнения приводят 
к лучшей теплопередаче. Однако чем выше коэффициент заполнения, тем выше давление, необхо-
димое для циркуляции, и тем больше потеря давления по пути циркуляции. Поэтому при даль-
нейшем увеличении давления теплопередача перестает улучшаться, а при еще большем увели-
чении давления даже ухудшается. Показано, что по мере возрастания давления в сосуде и коэф-
фициента заполнения увеличивается секция переохлаждения и уменьшается секция перегрева 
в испарителе. Поведение теплопередачи в трубке основано на конвективной теплопередаче и те-
плопередаче пузырькового кипения при низком тепловом потоке.

В [24] представлена гидродинамическая модель для изучения изменения температуры в закры-
тых кольцевых термосифонах с различными уровнями заправки рабочей жидкости – от 40 до 80 %  
от объема термосифона. Авторами рассчитан перепад давления, приведенная скорость, коэффи- 
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циент теплопередачи и теплопередача при различных условиях наполнения. Установлено,  
что коэффициент заполнения рабочей жидкостью напрямую влияет и на давление в системе, по-
скольку чем меньше жидкости в контуре, тем быстрее она испаряется и происходит возрастание 
давления. При этом высокая степень заполнения термосифона негативно влияет на его коэффи-
циент теплоотдачи, а также на скорость пара и жидкости. 

Сравнительно низкие характеристики теплопередачи традиционных жидкостей, используе-
мых для регулирования или контроля рабочей температуры в обычных радиаторах, двигателях  
и других промышленных устройствах, обусловили необходимость поиска новых смесей или рас-
творов жидкостей с улучшенными теплофизическими свойствами. Среди этих новых изучаемых 
классов есть наножидкости – смесь традиционных жидкостей, к которым добавлены наноча-
стицы различных типов и концентраций. Возможность контролировать или проектировать раз-
личные теплофизические свойства таких жидкостей как по отдельности, так и в совокупности, 
может дать возможность значительно повысить общую производительность системы. Особый 
интерес представляет возможность добавления в жидкости наночастиц материалов с высокой 
теплопроводностью для улучшения общей теплопроводности теплоносителей. Этими наноча-
стицами могут быть металлы, оксиды металлов, углеродные нанотрубки или графен, а базовы-
ми жидкостями часто являются вода, этиленгликоль (ЭГ), полиальфаолефин (ПАО) или другие 
жидкости. 

В [25] кратко рассматриваются различные способы применения наножидкостей. Основное 
внимание уделяется различным параметрам, которые, существенно влияют на термическое по-
ведение в целом и на теплопроводность этих наножидкостей в частности, включая такие пара-
метры, как размер и форма частиц, pH жидкости, поверхностно-активное вещество, тип раство-
рителя, водородные связи, температура, базовые жидкости и выравнивание используемых нано-
частиц (углеродные нанотрубки, графен и наночастицы оксидов металлов). Было обнаружено, 
что указанные параметры оказывают влияние на теплопроводность наножидкостей и могут как 
увеличивать ее, так и уменьшать.

Рис. 1. Схема экспериментальной установки [23]
Fig. 1. Scheme of the experimental setup [23]
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Авторы [26] исследовали кольцевой термосифон, представляющий собой алюминиевую пласти-
ну с наножидкостью. В качестве рабочих жидкостей испытывались диэлектрическая жидкость 
на основе гидрофторэфиров HFE-7000 и графеновая наножидкость, коэффициент заполнения 
(30, 50 и 70 %) и концентрация графена (0,3, 0,5 и 1 мас.%) варьировались. Авторы определя-
ли влияние однородного и неоднородного источника тепла на тепловое сопротивление, а также 
проводили визуализацию для понимания процесса кипения. Было установлено, что при подавае- 
мой мощности 90 Вт и коэффициенте заполнения 70 % тепловое сопротивление снижается при-
мерно на 4 % по сравнению с коэффициентом заполнения 30 % для той же подаваемой мощности 
90 Вт. Термическое сопротивление снижается на 4 % при увеличении концентрации графена 
в наножидкости от 0 до 0,5 мас.%. Равномерный источник тепла имеет лучшую производитель-
ность теплопередачи, чем неоднородный. Из эксперимента по визуализации заметное количе-
ство графена было унесено из испарителя в конденсатор в процессе кипения, особенно при более 
высокой концентрации 1 %, что вызвало закупорку канала и повышение теплового сопротивле-
ния, поэтому концентрация графена должна поддерживаться ниже 0,5 %.

Исследование характеристик теплопередачи контурного и традиционных термосифонов с ис-
пользованием наножидкости FexOy/вода и CuxOy/вода в качестве теплоносителей описано в [27]. 
Авторы разработали методику получения наножидкостей с использованием нанопорошков,  
полученных лазерным распылением мишени. Экспериментальные исследования указывают,  
что наножидкости являются перспективными в качестве теплоносителя в двухфазных систе-
мах, эффективно повышая коэффициент теплопередачи до 25–50 %. Массовая концентрация на-
ночастиц увеличивает коэффициент теплопередачи и, следовательно, снижает тепловое сопро- 
тивление кольцевого термосифона по сравнению с чистой водой. Также в работе показано,  
что наножидкости являются перспективными в качестве рабочей жидкости в двухфазных системах, 
эффективно повышая коэффициент теплопередачи до 20–25 %. Кроме того, величина критиче-
ского теплового потока значительно возросла (на 30 %) по сравнению с чистой водой, что сви-
детельствует об эффективности использования наножидкостей в традиционных термосифонах.

Интенсификация теплообмена в термосифонах. Разработка новых конструкций термоси- 
фонов происходит одновременно с ростом спроса на эффективные пассивные и экологичные устрой- 
ства рассеивания тепла. Секция испарителя является ключевой в теплообмене такого типа 
устройств. Среди различных методов изменения конструкции испарителя наиболее простым 
и эффективным является модификация внутренней поверхности стенок испарителя. В [28] вы-
полнен анализ эффективности теплопередачи двухфазного контурного термосифона с внутрен-
ней стенкой испарителя, усиленной нанопористыми и микропористыми структурами. Были об-
наружены три режима течения: пузырьковый поток с пузырьковым кипением, турбулентный 
поток пар-жидкость с обратным потоком и разделенный поток пар-жидкость при высоких тепло-
вых потоках. В ходе исследований зафиксированы два основных типа нестабильности, вызван-
ных неэффективной теплопередачей при кипении и испарении: 1) при малых тепловых потоках, 
где присутствовал обратный поток; 2) при высоких тепловых потоках, когда подавлялся режим 
пузырькового кипения и периодически образовывались локальные пересыхания. Добавление  
на внутренние стенки испарителя нано- и микроструктурированных поверхностей препятство-
вало возникновению колебаний, вызывающих нестабильность потока, во всем диапазоне и уве-
личило коэффициент теплопередачи в связи с более высокой плотностью зарождения и частоты 
отрыва пузырьков. 

Чтобы решить проблему теплопередачи с высоким тепловым потоком, авторы работы [29] 
также сосредоточились на модификации испарителя, отметив при этом, что нельзя игнорировать  
влияние конденсатора на всю систему. Авторами разработан контурный термосифон с воздуш-
ным охлаждением и конденсатором, состоящим из змеевидной медной трубки и гофрированных 
алюминиевых ребер. Эксперимент подтвердил, что конденсатор такой конструкции обладает 
превосходными характеристиками и его можно использовать совместно с контурным термоси-
фоном для реализации теплового потока 266,7 Вт · см–2. Применение змеевидного трубчатого 
испарителя приводит к двум видам нестабильности потока, а степень заполнения является клю-
чевым фактором, влияющим на присутствие нестабильности потока. По наблюдениям авторов, 
оптимальным выбором является высокая степень наполнения, которая позволяет избежать неста-
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бильности потока и инициализирует более быстрый переходный процесс. При этом температура 
воздуха мало влияет на термическое сопротивление и максимальную разность температур кон-
турного термосифона, поэтому данный термосифон можно использовать в различных погодных 
условиях. Однако экстремальные погодные условия (например, чрезвычайно высокая/низкая 
температура) могут повлиять на работу контурного термосифона. Такой контурный термосифон 
со змеевидным ребристым трубчатым конденсатором с оптимизированным высоким коэффициен-
том заполнения может использоваться в мощном электронном оборудовании с реализацией на-
ружного отвода тепла.

Применение термосифонов в различных областях. Термосифоны используются во многих 
областях техники, включая, помимо прочего, космические системы, автомобильную промыш-
ленность, железнодорожную отрасль, охлаждение электрооборудования, электроники и лопаток 
турбин, теплообменники, системы контроля влажности в пищевой промышленности, фармоко-
логии, солнечные энергетические системы и атомная промышленность.

Широкое распространение получили двухфазные термосифоны, использующиеся для стаби-
лизации температур (сохранения почвы в замороженном состоянии) в регионах вечной мерзло- 
ты [30]. Эти термосифоны, как правило, с одним закопанным в землю концом, а вторым – вы-
веденным на поверхность и обдуваемым воздухом, работающие за счет подбора подходящих 
рабочих жидкостей с низкой температурой кипения. Они широко используются в условиях 
холодного климата для поддержания температуры автодорог, железных дорог, нефтепроводов 
в Америке, России и Китае. Наиболее приметным является Транс-Аляскинский трубопровод 
с примерно 120 тыс. установленных термосифонов, которые обеспечивают низкую температуру 
почвы под ним.

Рассматривается применение термосифонов даже в более нетрадиционных целях, таких  
как сохранение археологических памятников в Арктике или получение низкотемпературной 
энергии из отходов. В холодном климате термосифоны используются для консервации вечной 
мерзлоты и борьбы с обледенением дорог. Термосифоны успешно использовались для предот-
вращения миграции загрязняющих веществ из хвостохранилищ в Канаде и России. 

В [31] приводится обзор российского опыта по термостабилизации грунта с помощью тер-
мосифонов. В частности, рассматриваются возможности размещения испарителя термосифона 
в корпусе сваи, а также решения для термостабилизации грунтов под сооружениями большой 
площади или под группами зданий.

С помощью добавления в конструкцию ветряной мельницы термосифон был использован 
для сохранения земляного полотна в зоне вечной мерзлоты [32]. Такое устройство (рис. 2) мо- 
жет применяться для пассивного охлаждения, а также может быть адаптировано для охлаж- 
дения насыпей, оснований взлетно-посадочных полос, трубчатых фундаментов и других соо-
ружений. Результаты испытаний показали, что оно способно эффективно охлаждать земляное 

Рис. 2. Конструкция рабочего устройства 
и возможности его применения.  

Длина подземной части в исследуемой 
работе составляла 8 м [32]
Fig. 2. The working device  

and its application possibilities.  
The length of the underground part  

in the work under study was 8 m [32]
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полотно в зоне вечной мерзлоты на глубине  
до 8,0 м и радиусом 1,5 м на 0,6–1,0 °С при 
средней мощности 68,03 Вт.

Обеспечение допустимого температурного  
режима теплонагруженного и энергонасыщен- 
ного оборудования стало основной целью ра-
боты [33]. Были рассмотрены теплофизические 
аспекты и эффективность системы в энергети-
ческом теплонагруженном оборудовании тер-
мосифонов. Разработанный вспомогательный 
цилиндрический термосифон (рис. 3) в соста-
ве саморегулирующейся системы охлаждения 
способен отвести тепловой поток в диапазоне 
0,18–2,60 кВт/м2 в режиме с интенсивным ис-
парением теплоносителя (без кипения) на его 
нижней крышке и воздушным охлаждением 
конденсатора за счет естественной конвекции. 
Были исследованы различные рабочие жидкости и уровни заполнения (этанол показал лучшие 
результаты, чем дистиллированная вода), а также влияние теплоизоляции на эффективность 
зоны конденсации (теплоотдача ухудшилась, что заметно повлияло на характеристики устрой-
ства). Такие системы могут быть использованы на практике в качестве саморегулирующихся те-
плообменников, обеспечивающих допустимый температурный режим для теплонагруженного 
оборудования с умеренными тепловыми потоками.

В [34] приводится моделирование схемы отвода остаточных тепловыделений отработавших 
топливных сборок в шахте-хранилище с использованием термосифонов. Испаритель рассма-
триваемой термосифонной системы погружен в воду шахты-хранилища, а конденсатор выведен 
за пределы здания для теплового контакта с атмосферным воздухом. Была исследована эффек- 
тивность теплоотвода с использованием различных геометрических форм вытяжных труб (рис. 4),  
а также зависимость теплоотвода от температуры окружающего воздуха. Из рассмотренных 
наиболее эффективной оказалась эллиптическая форма вытяжной трубы с расположением тру-
бок конденсатора термосифона в нижней части (рис. 4, g). 

Для охлаждения бассейна с отработанным ядерным топливом с температурой 45–80 °С  
в [35] авторами было предложено использовать двухфазный термосифон длиной 3 м (рис. 5). В ходе 
работ были определены: нижний предел с частичным пересыханием – 20 % заправки рабочей 
жидкостью, предел кипения – 75 % (когда кипение не возникает вследствие недостаточного на-
грева для такого объема жидкости) и предел затопления – 100 %. При этом наивысшая эффек-
тивность охлаждения достигается с уровнем заполнения 30 %, что справедливо для всех рас- 

Рис. 3. Общий вид изучаемого устройства  
с и без теплоизоляции [33]

Fig. 3. General view of the studied device with  
and without thermal insulation [33]

Рис 4. Конденсационная часть термосифона (а) и варианты геометрических форм вытяжной трубы (b –g) [34]
Fig. 4. Condensation part of the thermosyphon (a) and variants of geometric shapes of the exhaust pipe (b–g) [34]
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смотренных температур охлаждаемой жид- 
кости.

Активное развитие и производство элек-
тромобилей – одна из наиболее актуальных 
на сегодняшний день тем. Для увеличения 
мощности электромотора необходимо пре-
жде всего решить проблему его охлажде- 
ния. В [36] предложено использование вра- 
щающихся кольцевых термосифонов в ро-
торе синхронного электродвигателя на по-
стоянных магнитах. Приводится численное  
моделирование одно- и двухконцевых тер-
мосифонов (рис. 6). Такие термосифоны 
позволяют значительно уменьшить осевые 
градиенты температур и снизить общий 
температурный уровень в целом по срав-
нению с ротором без термосифонов. При 
частотах вращения ротора и электриче-
ских токах в диапазонах 1200–1500 об/мин 
и 1000–1200 А максимальные температу-
ры в роторе с одно- и двухконцевыми вра-
щающимися кольцевыми термосифонами  
соответственно снижаются на 8–14 °С  
и 10–22 °С относительно ротора без термо-
сифонов.

В [37] авторы предложили новый пластинчатый термосифон для охлаждения элементов теле- 
коммуникационной системы. Были исследованы тепловые характеристики как свободного,  
так и принудительного конвективного охлаждения в вертикальном и горизонтальном направле-
ниях. Экспериментальные результаты показали более низкое тепловое сопротивление при более  

Рис. 5. Двухфазный термосифон для охлаждения бассейна 
с отработанным ядерным топливом [35]

Fig. 5. Two-phase thermosyphon for cooling  
a pool with spent nuclear fuel [35]

	                        a				     		          b
Рис. 6. Cтатор и ротор охлаждаемого электромотора и предлагаемый принцип охлаждения с помощью кольцевых 

термосифонов (a); одно- и двухконцевые термосифоны (пространственно расположенные в роторе)  
и градиенты температур на них при скорости ротора 1200 об/мин и силе тока 1000 А (b) [36]

Fig. 6. Stator and rotor of a cooled electric motor and the proposed cooling principle using ring thermosyphons (a);  
Single- and double-ended thermosyphons (spatially located in the rotor) and temperature gradients  

on them at a rotor speed of 1200 rpm and a current of 1000 A (b) [36]
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высоких коэффициентах наполнения и высоких тепловых потоках. Авторы также пришли к вы- 
воду, что благоприятная гравитационная ориентация увеличила интенсивность циркуляции 
жидкости в испытательном вертикальном пластинчатом термосифоне, что привело к лучшим  
по сравнению с горизонтальной ориентацией тепловым характеристикам. Также сделан вывод, 
что для охлаждения телекоммуникационного узла наиболее оптимальным является вертикаль-
ный термосифон. 

В [38] описаны эксперименты с плоским термосифоном в вертикальной ориентации для управ-
ления температурой авионики (электронного оборудования на борту самолета). Авторами было 
предложено решение для повышения эффективности отвода тепла от электронных корпусов 
в авиационной промышленности (рис. 7). В качестве термически активной стенки шасси был 
спроектирован и изготовлен плоский термосифон, состоящий из девяти пластин из нержаве- 
ющей стали, сложенных друг на друга и соединенных диффузионной сваркой. Он был изготов-
лен и испытан при пяти различных условиях нагрева (меняя размер и положение нагревателя) 
и четырех коэффициентах заполнения, а также пустой (без рабочей жидкости) для сравнения. 
Тепловое сопротивление варьировалось от 0,047 до 0,327 °C/Вт для испытаний с оптимальным 
коэффициентом заполнения. Увеличение входной мощности улучшило тепловые характери-
стики плоского термосифона, тогда как уменьшение размера нагревателя отрицательно на них 
повлияло. Термическое сопротивление нового термосифона оказалось конкурентоспособным  
по сравнению с другими плоскими тепловыми трубками, приведенными авторами.

Авторы [39] изучали охлаждающие характеристики термосифонов в гибридных системах 
кондиционирования воздуха с радиационным охлаждением. С использованием программно-
го обеспечения OpenModelica проводилось моделирование таких систем для анализа влияния 
структурных параметров на производительность. Также даны оценки потенциала энергосбере-
жения при применении радиационного охладителя на основе термосифона в жилых домах в пяти 
климатических зонах Китая. Результаты показали, что годовое потребление электроэнергии  
на охлаждение может быть снижено на 41–56 %, а период окупаемости для одноэтажного се-
мейного дома с оптимизированным радиационным охладителем на основе термосифона во всех 
пяти климатических зонах Китая составляет приблизительно от 8,4 до 10,5 лет.

В [40] исследуется интеграция термосифонов с радиационными охладителями в системах 
кондиционирования на основе CO2. Выполнен анализ условий для повышения энергоэффектив-
ности и снижения тепловой нагрузки в зданиях. Максимальные приросты КПД и эксергетиче-
ской эффективности составили 33,8 и 29,1 % соответственно, что сопоставимо с эффективностью 
интегрированной солнечной фотоэлектрической системы.

Авторы [41] рассмотрели принципы работы контурного термосифона и возможности его при-
менения в системе охлаждения центра обработки данных. Отмечается влияние выбора хладаген-
та и коэффициента заполнения, а также диаметра трубок на работу контурного термосифона. Рас- 
смотрено применение контурного термосифона как в охлаждении на уровне комнаты, так и на более 

Рис. 7. Схема пластин, из которых состоит плоский 
термосифон: 1 – замыкающая пластина испарителя; 

2 – пять слоев сетчатого фитиля, приваренных 
точечной сваркой поверх пластины испарителя; 

3 – набор из трех гребневидных пластин; 
4 – промежуточная пластина; 5 – набор из трех 

гребневидных пластин; 6 – замыкающая пластина 
конденсатора

Fig. 7. Schematic of the plates that compose the flat 
thermosyphon: 1 – evaporator closing plate;  

2 – five layers of screen mesh wick spot welded over  
the evaporator plate; 3 – set of three comb-like plates; 

4 – intermediate plate; 5 – set of three comb-like plates; 
6 – condenser closing plate
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локальных уровнях: охлаждение стойки с охлаждаемой электроникой и отдельных чипов. Также 
представлена комбинированная система компрессора и контурного термосифона, которая может 
использоваться для охлаждения базовой станции телекоммуникаций. Указывается на заметное 
улучшение энергоэффективности таких устройств по сравнению с использованием только кон-
диционирования воздуха в качестве метода охлаждения, поскольку система может использовать 
холодный уличный воздух непосредственно в качестве теплоотвода. В зависимости от темпера-
туры воздуха возможны различные режимы работы такой системы. 

Разработка пассивного охлаждения трехмерных многослойных интегрированных микросхем 
с использованием двухфазного миниатюрного термосифона приведена в [42]. Особенностью яв-
ляется то, что несколько нагревателей (чипов) пространственно разделены и охлаждаются одним 
устройством (рис. 8). Авторы рассматривали такие параметры, как угол наклона испарителя, 
вертикальное разделение между испарителем и конденсатором, а также режимы кипения на вы-
ходе из испарителя. Определено, что увеличение высоты стояка путем изменения угла наклона  
устройства заметно улучшает эффективность охлаждения. Однако большие углы наклона испа-
рителя не всегда способствовали повышению эффективности охлаждения, особенно при боль-
шей высоте стояка. При более высокой скорости потока угол наклона 0° обеспечивал несколько 
лучшую эффективность охлаждения, чем другие углы наклона. В целом такая схема эффективно 
справляется с охлаждением нескольких различных электронных компонентов с разным уровнем 
тепловыделения и является достаточно компактной для применения в дата-центрах.

Двухфазный кольцевой термосифон обладает значительными преимуществами в высокоэф-
фективной передаче тепла на большие расстояния для различных применений в тепловых маши-
нах и энергетике и не требует дополнительного потребления энергии. В [43] экспериментально 
исследованы теплопередающие характеристики двухфазного кольцевого термосифона с микро-
канальным испарителем и проведено их сравнение с характеристиками двухфазного кольце-
вого термосифона с гладкотрубным испарителем. В качестве рабочей жидкости использовался 
1,1,13,3-пентафторпропан (R245fa) при объемном коэффициенте наполнения 50–80 %. Результаты 
показали, что дополнительные микроканавки позволили сократить время запуска и достигнуть 
более низкой максимальной температуры по сравнению с температурным перерегулированием. 
Контурный термосифон с микроканальным испарителем показал более низкие температуры  
испарителя и лучшую изотермичность по сравнению с термосифоном с гладкотрубным испарите-
лем. Структуры с микроканалами могут смягчить локальное прерывистое пересыхание при уме-
ренных и высоких уровнях потребляемой мощности для коэффициентов заполнения 50 и 60 %.  
Добавление структур с микроканавками улучшило параметры теплопередачи термосифона 
с гладкотрубным испарителем, обладающим более низким термическим сопротивлением.

Фирмой Thermacore (США) были разработаны две конструкции контурных термосифонов 
с капиллярными структурами для охлаждения электроники: мощный контурный термосифон 

	                               a				     		            b

Рис. 8. Схема (а) и сечение (b) моделированного испарителя термосифона для охлаждения трехмерных 
многослойных интегрированных микросхем [42]

Fig. 8. Schematic (а) and cross-section (b) of a simulated thermosyphon evaporator for cooling three-dimensional  
multilayer integrated circuits [42]
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с горизонтальным испарителем в виде U-образной трубки, и контурный термосифон с горизон-
тальными трубопроводами и плоским испарителем, нагреваемым с обеих сторон. Испарители 
в обоих случаях были разработаны с учетом совместимости с компонентами электроники [44]. 
Для того чтобы избежать замерзания (при температурах окружающей среды ниже 0 °C), в каче-
стве рабочих жидкостей были предложены метанол и этиловый спирт. Результаты испытаний 
показали, что контурный термосифон с капиллярными структурами может работать с относи-
тельно высокими тепловыми потоками на стенке испарителя – до 70 Вт/см2 (с метанолом в каче-
стве рабочей жидкости). 

Заключение. Данная работа представляет собой краткий обзор результатов последних раз-
работок, исследований и практического применения в различных областях техники двухфазных 
теплопередающих устройств – двухфазных термосифонов. Рассмотрены возможности интен-
сификации теплообмена и влияние геометрии термосифона, в частности области испарителя, 
на его производительность. Приведены исследования влияния рабочей жидкости и объема за-
полнения. Выполнен анализ ряда работ, описывающих применения двухфазных термосифонов 
в разных областях, в частности, для термостабилизации грунта, охлаждения теплонагруженного 
оборудования или объектов с зонами постоянного интенсивного тепловыделения, а также охлаж-
дения электроники, в том числе миниатюрных чипов.
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