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Оригинальная статья

Е. Е. Петюшик1, И. В. Фомихина2*, А. А. Дробыш3

1Государственное научно-производственное объединение порошковой металлургии  
Национальной академии наук Беларуси, ул. Платонова, 41, 220005, Минск, Республика Беларусь 

2Государственное научное учреждение «Институт порошковой металлургии  
имени академика О. В. Романа» Национальной академии наук Беларуси,  

ул. Платонова, 41, 220005, Минск, Республика Беларусь 
3Белорусский национальный технический университет,  

пр. Независимости, 65, 220013, Минск, Республика Беларусь

ЗАКОНОМЕРНОСТИ ФОРМИРОВАНИЯ СТРУКТУРЫ  
И СВОЙСТВ ПОРИСТЫХ КОМПОЗИТОВ НА ОСНОВЕ БАЗАЛЬТОВОГО ВОЛОКНА 

В ПРОЦЕССЕ ТЕРМОЦИКЛИРОВАНИЯ12

Аннотация. Представлены результаты исследования структуры и свойств двух составов пористых компози-
ционных материалов системы CaO–MgO–FeO(Fe2O3)–Al2O3–SiO2 на основе базальтового волокна, сформированных 
в процессе термоциклирования. Изготовленные из шихты I состава образцы имели следующую структуру: базаль-
товое волокно (37 мас.%) + муллитокремнеземистое волокно (19 мас.%) + модификатор Al2(SO4)3 в качестве связки 
(11 мас.%) + порообразователь (19 мас.%) + фарфор в качестве упрочнителя (4 мас.%) + пластификатор (11 мас.%);  
II состава: базальтовое волокно (52 мас.%) + SiO2 (15 мас.%) + порообразователь (1 мас.%) + фарфор (алюмосили-
кат) в качестве упрочнителя (6,5 мас.%) + пластификатор (КМЦ, 6,5 мас.%) + известняковая мука (карбонат каль-
ция, CaCO3, 19 мас.%). Термоциклирование проводилось в трех диапазонах температур 750–770 °С, 1025–1075 °С,  
1070–1090 °С с целью получения определенных структуры и свойств композитов, спрессованных под давлением 20, 
40 и 60 МПа. Для контроля морфологии поверхности, изменения фазового состава, аморфности и параметров тон-
кой структуры, пористости, проницаемости и прочностных свойств проводили оценку образцов на каждом цикле 
процесса. На основе установленных закономерностей структурообразования предложены режимы формирования  
порового пространства с сохранением пористости не ниже 45 %, прочности – 5–25 МПа, усадки в процессе спека-
ния – не более 20 %. Исследованные композиционные материалы могут быть использованы для создания фильт- 
рующих элементов систем разделения, очистки, преобразования жидких и газообразных сред. 

Ключевые слова: базальтовое волокно, термоциклирование, спекание, силлиманит, анортит, пористость, про-
ницаемость 
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REGULARITIES OF FORMATION OF STRUCTURE  
AND PROPERTIES OF POROUS COMPOSITES BASED ON BASALT FIBER  

IN THE PROCESS OF THERMOCYCLING

Abstract. The results of studying the structure and properties of two compositions of porous composite materials of the 
CaO–MgO–FeO(Fe2O3)–Al2O3–SiO2 system based on basalt fiber formed during thermal cycling are presented. The samples 
made from the mixture of composition I had the following structure: basalt fiber (37 wt.%) + mullite-silica fiber (19 wt.%) + 
modifier Al2(SO4)3 as a binder (11 wt.%) + blowing agent (19 wt.%) + porcelain as a hardener (4 wt.%) + plasticizer (11 wt.%); 
II composition: basalt fiber (52 wt.%) + SiO2 (15 wt.%) + blowing agent (1 wt.%) + porcelain (aluminosilicate) as hardener 
(6.5 wt.%) + plasticizer (CMC, 6.5 wt.%) + limestone flour (calcium carbonate, CaCO3, 19 wt.%). Thermal cycling was carried 
out in three temperature ranges of 750–770 °C, 1025–1075 °C, 1070–1090 °C in order to obtain certain structure and prop-
erties of composites pressed under pressure of 20, 40 and 60 MPa. To control surface morphology, changes in phase compo-
sition, amorphousness and fine structure parameters, porosity, permeability and strength properties, samples were evaluated  
at each process cycle. On the basis of established patterns of structure formation, modes of formation of pore space are pro-
posed with preservation of porosity not lower than 45 %, strength 5–25 MPa, shrinkage in the process of sintering – not more 
than 20 %. The studied composite materials can be used to create filter elements of systems for separating, cleaning, converting 
liquid and gaseous media.
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Введение. Технологический прогресс требует высокоэффективных решений при создании 
передовых устройств для динамических систем разделения, очистки, преобразования (в том 
числе и каталитического) жидких и газообразных сред. Традиционно к таким изделиям предъ-
являются высокие требования по химической стойкости, механической прочности, пористости 
и возможности регенерации. Развитие и активное внедрение этих процессов в различных отрас- 
лях промышленности определяет совершенствование существующих и создание новых, особенно  
пористых, материалов на основе природных минералов волокновой структуры, которые облада-
ют указанным комплексом свойств [1–3]. Несмотря на значительную востребованность, не толь-
ко многослойные керамические материалы, разработанные в Республике Беларусь (Институт 
порошковой металлургии имени академика О. В. Романа, Институт общей и неорганической 
химии Национальной академии наук Беларуси, Белорусский национальный технический уни-
верситет), но и изделия мировых производителей (TAMI, Drager Medics, ООО «Керамикфильтр» 
и др.) характеризуются структурой, которая не всегда обеспечивает достаточный уровень слу-
жебных характеристик [2–4]. 

Совершенствование современной техники предполагает более широкое применение раз- 
личных средств и способов, улучшающих качество пористых материалов. Для расширения об- 
ласти применения керамических пористых композиционных материалов (КПМ) стоит задача  
существенного повышения проницаемости при сохранении достаточной прочности. Керамика 
на основе дисперсных волокон характеризуется малым удельным весом в сочетании с повышен- 
ной прочностью, теплопроводностью, устойчивостью относительно тепловых ударов. Предполо- 
жительно, создание КПМ на основе базальтовых волокон к указанным выше преимуществам 
добавит и увеличение коэффициента проницаемости [5; 6]. Однако ассортимент волокон, при-
годных для создания технологически прочной керамики, ограничен свойствами исходного ма-
териала. При производстве базальтовых волокон в качестве сырья используются горные поро-
ды, химический состав которых близок по составу к алюмосиликатным порошкам и содержит  
(по массе): 45–55 % SiO2; 10–20 % Al2O3 и до 20 % FeO + Fe2O3 и MgO. Как было ранее дока- 
зано, спекание подобной композиции будет происходить с участием жидкой фазы [7–11]. Таким 
образом, могут создаваться пористые материалы, характеризующиеся композиционной струк-
турой, на основе волокнистой матрицы – КПМ. Пористые композиционные материалы на осно-
ве базальтовых волокон ранее не создавались [12; 13]. При исследовании свойств фильтрующих 
элементов на основе силикатов и алюмосиликатов было установлено, что сложные механизмы 
контактообразования и химические реакции в процессе термообработки приводят к напряжен-
ному состоянию материала готового изделия. Неблагоприятное структурно-механическое со-
стояние является основным фактором, снижающим прочность рассматриваемых материалов. 
Необходимо создавать такие материалы, которые способны противостоять гидравлическим или 
пневматическим ударам, неизбежно возникающим при резком изменении давления в режиме 
регенерации обратной промывкой или продувкой. В большинстве случаев механическими ха-
рактеристиками высокопористых материалов являются прочность на сжатие и микротвердость. 
Основным направлением, позволяющим значительно улучшить характеристики и, следователь-
но, повысить конкурентоспособность керамических изделий, является создание композицион-
ных материалов с разнофазной структурой. Существующие композиционные керамические 
материалы можно разделить на три основных класса: дисперсно-упрочненные, упрочненные 
частицами и армированные волокнами. Все эти структуры представляют собой матрицу основ-
ного материала, в котором распределена вторичная фаза, способная резко улучшить комплекс 
физико-механических свойств керамических изделий [14–20].

В настоящее время используются фильтрующие материалы в основном зарубежного произ-
водства, которые имеют высокую стоимость. Значительное снижение стоимости возможно пу-
тем использования отечественного силикатного и алюмосиликатного сырья, включая вторичные 
ресурсы, и создания пористых многослойных материалов [21–26]. Керамические материалы на 
основе силикатов и алюмосиликатов являются наиболее перспективными для использования 
в фильтрующих устройствах в связи с их высокой химической устойчивостью, высокой механи-
ческой прочностью, стойкостью к воздействию абразивных частиц и бактерий, возможностью 
регенерации сочетанием различных методов и относительно невысокой стоимостью.
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Цель работы – исследовать закономерности формирования структуры и свойств пористых 
композитов на основе базальтового волокна в процессе термоциклирования.

Материалы и методика исследования. Объектами исследования являлись образцы компо-
зитов двух составов (I, II) на основе базальтового волокна, сформированные в процессе трех 
циклов термоциклирования. Для контроля морфологии поверхности, изменения фазового со-
става, аморфности и параметров тонкой структуры, пористости, проницаемости и прочностных 
свойств проводили контроль образцов на каждом цикле термоциклирования. 

Изготовленные из шихты I состава образцы имели следующую структуру: базальтовое волок-
но (37 мас.%) + муллитокремнеземистое волокно (19 мас.%) + модификатор Al2(SO4)3 в качестве  
связки (11 мас.%) + порообразователь (19 мас.%) + фарфор в качестве упрочнителя (4 мас.%) + пла- 
стификатор (11 мас.%). После гранулирования осуществлялось радиальное прессование при дав-
лениях 20 и 40 МПа. Термоциклирование композитов данного состава проводилось в диапазоне 
1025–1075 °С. Маркировка образцов и режимы термоциклирования указаны в табл. 1.

Графическое изображение режимов термоциклирования композитов I состава представлено 
на рис. 1.

Т а б л и ц а  1.  Маркировка образцов и режимы термоциклирования композитов I состава 
T a b l e  1.  Labeling of samples with thermal cycling modes of composites of the I composition

Маркировка 
образцов
Marking  

of the samples

Давление  
прессования, МПа

Pressing pressure, MPa

Режим термоциклирования
Thermal cycling mode

1-1025-20
2-1050-20
3-1075-20

20

1-й цикл: нагрев от 20 до 1025 °С – выдержка 10 мин – охлаждение вместе с печью 
до 1000 °С – выдержка 10 мин 
2-й цикл: нагрев от 1000 до 1050 °С – выдержка 10 мин – охлаждение вместе  
с печью до 1025 °С – выдержка 10 мин 
3-й цикл: нагрев от 1025 до 1075 °С – выдержка 10 мин – охлаждение вместе  
с печью до полного остывания 
1st cycle: heating from 20 to 1025 °С – exposure for 10 minutes – cooling together with 
the furnace to 1000 °С – exposure for 10 minutes
2nd cycle: heating from 1000 to 1050 °С – exposure for 10 minutes – cooling together 
with the furnace to 1025 °С – exposure for 10 minutes
3rd cycle: heating from 1025 to 1075 °С – exposure for 10 minutes – cooling together 
with the furnace until complete cooling

1-1025-40
2-1050-40
3-1075-40

40

Рис. 1. Графическое изображение режимов термоциклирования композита I состава  
в интервале 1025–1075 °С

Fig. 1. Graphical representation of the thermal cycling modes of composites  
of composition I in the range of 1025–1075 °C
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Изготовленные из шихты II состава образцы имели следующую структуру: базальтовое во-
локно (52 мас.%) + SiO2 (15 мас.%) + порообразователь (1 мас.%) + фарфор (алюмосиликат) в каче-
стве упрочнителя (6,5 мас.%) + пластификатор (КМЦ, 6,5 мас.%) + известняковая мука (карбонат 
кальция, CaCO3, 19 мас.%). Прессование осуществлялось при давлениях 20 МПа, 40 и 60 МПа, 
термоциклирование – в температурных интервалах 750–770 °С и 1070–1090 °С. Маркировка об-
разцов II состава и режимы термоциклирования указаны в табл. 2.

Т а б л и ц а  2.  Маркировка образцов с режимами термоциклирования композитов II состава 
T a b l e  2.  Labeling of samples with thermal cycling modes of composites of the II composition

Маркировка 
образца
Marking  

of the sample

Давление  
прессования, МПа

Pressing pressure, MPa

Режим термоциклирования
Thermal cycling mode

1-750-20 20
1-й цикл: нагрев от 20 до 750–770 оС – выдержка 15 мин – охлаждение вместе  
с печью до 500 °С
2-й цикл: нагрев от 500 до 750–770 оС – выдержка 15 мин – охлаждение вместе  
с печью до 500 °С
3-й цикл: нагрев от 500 до 750–770 °С – выдержка 15 мин – охлаждение вместе  
с печью до полного остывания
1st cycle: heating from 20 to 750–770 °C – exposure for 15 min – cooling with oven  
to 500 °C
2nd cycle: heating from 500 to 750–770 °C – exposure for 15 min – cooling together 
with the oven to 500 °C
3rd cycle: heating from 500 to 750–770 °C – exposure for 15 min – cooling with  
the oven until completely cooled

2-750-40 40

3-750-60 60

1-1070-20 20
1-й цикл: нагрев нагрев от 20 до 1070–1090 °С – выдержка 10 мин – охлаждение 
вместе с печью до 750 °С
2-й цикл: нагрев от 750 до 1070–1090 °С – выдержка 10 мин – охлаждение вместе 
с печью до 750 °С
3-й цикл: нагрев от 750 до 1070–1090 °С – выдержка 10 мин – охлаждение вместе 
с печью до полного остывания
1st cycle: heating from 20 to 1070–1090 °C – exposure for 10 min – cooling with oven 
to 750 °C
2nd cycle: heating from 750 to 1070–1090 °C – exposure for 10 min – cooling with  
the oven to 750 ° C
3rd cycle: heating from 750 to 1070–1090 °C – exposure for 10 min – cooling with  
the oven until completely cooled

2-1070-40 40

3-1070-60 60

Графическое изображение режимов термоциклирования композитов II состава представлено 
на рис. 2.

В качестве исходных материалов использовали рубленое базальтовое волокно марки БС16−12−76 
(диаметр волокна 12 мкм, длина до 16 мм); муллитокремнеземистое волокно, упрочняющий 
агент – продукт размола боя изделий из политого фарфора (ГОСТ 28390–891, ЗАО «Добрушский 
фарфоровый завод»); модификаторы – Al2(SO4)3, CaCO3; порообразователи – мука хлебопекар- 
ная (ГОСТ 26574–852), полистирол; пластификаторы – водный раствор карбоксиметилцеллюлозы 
(КМЦ), водный раствор поливинилового спирта (ПВС). Шихту для прессования эксперимен-
тальных образцов готовили смешиванием ингредиентов в лабораторном шнековом смесителе  
непрерывного действия. Для достижения максимально возможных значений пористости 
и прочности соотношение ингредиентов в шихте определялось экспериментальным путем. 
Прессование экспериментальных образцов ∅16 мм и высотой 16 мм производили на лаборатор-
ном прессе ПГПр, спекание образцов – в печи сопротивления типа SNOL на воздухе. Диапазон 
температур спекания 1025–1075 °С ограничивался требованиями сохранения пористости не ниже 
45 %, прочности – 5–25 МПа, усадки в процессе спекания – не более 20 %.

Известно [8–12], что в данных диапазонах температур происходит образование фаз силли-
манита (Al2O5Si) и анортита (CaAl2Si2O8), входящих в состав жидкофазных эвтектик, которые 

1 ГОСТ 28390–89. Изделия фарфоровые. Технические условия. М.: ИПК Изд-во стандартов, 2003. 9 с. URL: 
https://meganorm.ru/Data2/1/4294826/4294826392.pdf

2 ГОСТ 26574–85. Мука пшеничная хлебопекарная. Технические условия. М.: ИПК Изд-во стандартов, 2002. 
6 с. URL: https://meganorm.ru/Data2/1/4294827/4294827861.pdf
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участвуют в образовании контактов при спекании композитов. Термоциклирование увеличивает 
их количество, повышая прочность. Охлаждение при термоциклах до 500 и 750 °С не позволяет 
полностью заполнить поровое пространство жидкой фазой и частично сохраняет аморфность. 
Диссоциация карбоната кальция CaCO3 при 500 °С [13–15] выступает катализатором процесса 
образования силлиманита, при 750 °С – анортита за счет своей модифицирующей функции. 

Морфологический анализ поверхности и микрорентгеноспектральный анализ осуществля- 
лись на аттестованном сканирующем электронном микроскопе высокого разрешения Mira 
(TESCAN, Чехия) с микрорентгеноспектральным анализатором INCA Energy 350 (Oxford Instru- 
ments Analytical, Великобритания). Погрешность метода составила 3–5 %.

Исследование фазового состава и рентгеноструктурный анализ выполнялись на рентгенов-
ском дифрактометре Ultima IV (Rigaky) в CuKα-излучении. Для определения фазового состава 
исследуемых образцов проводилась съемка рентгенограмм в непрерывном режиме с заданным 
шагом по углу 0,2° и интервалом углов 2θ = 3–80° (данные условия съемки выбирались с уче-
том нахождения линий предполагаемых фаз картотеки COD). Сбор и обработка информации 
осуществлялась с помощью программы Standard Measurement, расшифровка фазового состава 
и рентгеноструктурного анализа полученных рентгенограмм проводилась в программе PDXL2 
(разработчик программ Rigaky Corporation). 

Испытание на сжатие проводилось на универсальной испытательной машине Tinius Olsen  
H150K-U (Великобритания). Погрешность измерения составила 1 %. Пористость и проницаемость  
определялась на автоматизированном порометре капиллярных потоков Porolux 500 (Германия) 

Рис. 2. Графическое изображение режимов термоциклирования композитов II состава:  
а – интервал 750–770 °С; b – интервал 1070–1090 оС 

Fig. 2. Graphical representation of the thermal cycling modes of composites of composition II:  
a – interval 750–770 °C; b – interval 1070–1090 °C
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по исследованию порошковых материалов газодинамическим методом, общая пористость – ме-
тодом гидростатического взвешивания.

Результаты исследования и их обсуждение. Морфология поверхности и диаграммы сжатия  
композитов I состава (по массе): 37 % базальтовое волокно + 19 % муллитокремнеземистое во- 
локно + 11 % модификатор Al2(SO4)3 + 4 % фарфор + 19 % порообразователь + 10 % пластифика- 
тор, после прессования при 20 и 40 МПа, сформированных в процессе трех циклов термоцикли-
рования в диапазоне температур 1025–1075 °С приведены на рис. 3.

Изучение морфологии поверхности композитов на основе базальтового волокна, спрессо-
ванных при давлении 20 МПа, после проведения трех циклов термоциклирования в диапазоне 
1025–1075 °С выявило, что за счет спекания базальтового волокна в композите происходит обра-
зование каркасной структуры при сохранении небольшого процента «гладкости» поверхности 
волокон, указывающей на аморфность (см. рис. 3, а–с). Спекание изменяет структуру порового 
пространства от щелевидной формы до объемно-равноосной с уменьшением среднего размера  
пор от 59,0 до 15,2 мкм, снижает проницаемость от 30,9 · 10–12 до 13,8 · 10–12 м2 и открытую пори-
стость – от 75,5 до 56,1 %. С увеличением до трех циклов нагрева повышается предел прочности 
на сжатие с 2,9 по 14,9 МПа. 

Прессование при давлении 40 МПа приводит к уплотнению волокон и образованию регу-
лярной пористой структуры (см. рис. 3, d–f ). Увеличение количества термоциклов практически  
не влияет на средний размер пор (15,1 мкм при одном цикле и 14,4 мкм при трех циклах). Изме- 
нения газовой проницаемости и пористости также не наблюдается. Газовая проницаемость со-
ставляет 11 · 10–12 м2, пористость в среднем – 58 %. Предел прочности на сжатие увеличивается 
с 11,9 по 31,5 МПа. Поверхность волокон остается практически гладкой. 

Анализ диаграмм сжатия (см. рис. 3, с, f) показал, что в образцах, спрессованных при 20 МПа,  
происходит значительное разрушение волокон при небольших нагрузках 0,5–1,4 кН. Максимальный  

    
	           a				      b					     c

    
	           d				      e					     f

Рис. 3. Морфология поверхности и диаграммы сжатия композитов I состава после трех циклов термоциклирования 
в диапазоне температур 1025–1075 °С: а–с – давление прессования 20 МПа; d–f – давление прессования 40 МПа 

Fig. 3. Surface morphology and compression diagrams of composites of composition I after three cycles of thermal cycling  
in the temperature ranges 1025–1075 °C: a–c – pressing pressure 20 MPa; d–f – pressing pressure 40 MPa
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предел прочности на сжатие составляет 14,9 МПа. Дальнейшее увеличение испытательной на-
грузки «прессует» разрушенные волокна, о чем свидетельствует образование полочки на диа-
грамме. При давлении 40 МПа значение выдерживаемых нагрузок повышается до 3,4 кН с уве-
личением предела прочности до 31,5 МПа. Полочка на диаграмме также присутствует, однако 
отличается плавностью распределения, что говорит о меньшем разрушении волокон.

Исследование фазового состава композитов на основе базальтового волокна, спрессованных  
при давлениях 20 и 40 МПа, после проведения трех циклов термоциклирования в диапа- 
зоне 1025–1075 °С установило, что на поверхности базальтового волокна на основе SiO2–Al2O3  
образуется эвтектическая фаза следующего состава: анортит (CaAl2SiO8), силлиманит (Al2SiO5).  
Гематит (Fe2O3) и магнезиоферрит (MgFe2O4) входят в состав базальтового волокна. Термоцикли- 
рование изменяет процентное содержание фаз без образования новых. Исходя из данных, пред-
ставленных в табл. 3, можно заключить, что с увеличением количества циклов уменьшается сте-
пень аморфности волокна с кристаллизацией значительного количества кварца (SiO2).

Т а б л и ц а  3.  Рентгенофазовый и рентгеноструктурный анализы композитов на основе базальтового 
волокна, спрессованных при давлении 40 МПа, после проведения трех циклов термоциклирования  

в диапазоне 1025–1075 °С
Ta b l e  3.  X-ray phase- and X-ray diffraction analyses of basalt fiber composites compressed at a pressure  

of 40 MPa after three thermal cycling cycles in the range of 1025–1075 °C

Маркировка, режим 
термоциклирования
Marking, thermal  
cycling mode

Фазовый состав
Phase composition

Содержание 
фазы, %

Phase content, %

Размер  
кристаллитов, нм

Size of crystallites, nm

Аморфность, %
Amorphous, %

1-1025-40, 1-й цикл
1-1025-40, 1st cycle

SiO2 (кварц / quartz) 13 19,5 

12

CaAl2SiO8 (анортит / anorthite) 42 2,6
Al4SiO5 (муллит / mullit) 14 2,1

Al2SiO5 (силлиманит / sillimanite) 20 2,1
Fe2O3 (гематит / hematite) 4 9,3

MgFe2O4 (магнезиоферрит / magnesioferrite) 7 5,2

2-1050-40, 2-й цикл
2-1050-40, 2nd cycle

SiO2 (кварц / quartz) 14 4,8

9

CaAl2SiO8 (анортит / anorthite) 42 2,4
Al4SiO5 (муллит / mullit) 21 2,3

Al2SiO5 (силлиманит / sillimanite) 9 1,1
Fe2O3 (гематит / hematite) 7 11,6

MgFe2O4 (магнезиоферрит / magnesioferrite) 7 6,3

3-1075-40, 3-й цикл
3-1075-40, 3rd cycle

SiO2 (кварц / quartz) 24 4,1

6

CaAl2SiO8 (анортит / anorthite) 43 1,9
Al4SiO5 (муллит / mullit) 13 1,2

Al2SiO5 (силлиманит / sillimanite) 7 1,2
Fe2O3 (гематит / hematite) 6 1,1

MgFe2O4 (магнезиоферрит / magnesioferrite) 7 5,6

Результаты исследования показывают, что после проведения 3-го цикла (относительно од- 
ного цикла) за счет образования новых центров кристаллизации происходит измельчение кри-
сталлитов кварца с 19,5 до 4,1 нм. 

Определено, что в композитах, спрессованных при 20 МПа, прочность на сжатие не превы- 
шает 14,9 МПа, что объясняется разнозернистостью кристаллитов (от 4,5 до 15,4 нм). Образо- 
вание мелкодисперсной структуры нанометрового уровня (1,9–4,1 нм) в композитах, спрессован-
ных при 40 МПа, увеличивает прочность на сжатие до 31,5 МПа при уменьшении аморфного 
состояния до 6 %.

Морфология поверхности и рентгенограммы композитов II состава (по массе): 52 % базальто-
вое волокно + 13 % SiO2 + 10 % модификатор CaCO3 + 6 % фарфор + 12 % порообразователь + 7 % 
пластификатор, спрессованных при давлениях 20, 40 МПа, после трех циклов термоциклирова-
ния в диапазонах 750–770 °С и 1070–1090 °С представлены на рис. 4.
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      a	 b

     c	 d
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Рис. 4. Морфология поверхности и рентгенограммы композитов II состава после трех циклов термоциклирования 
в диапазонах температур 750– 770 °С (a, b, e, f ) и 1070– 1090 °С (c, d, g, h) : а–d – давление прессования 20 МПа; 

e–h – давление прессования 40 МПа
Fig. 4. Surface morphology and X-ray diffraction patterns of composites of composition II after three cycles 

of thermocycling in the temperature ranges of 750–770 °C (a, b, e, f ) and 1070–1090 °C (c, d, g, h):  
a–d – pressing pressure of 20 MPa; e–h – pressing pressure of 40 MPa
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На рис. 4 показано, что после трех циклов термоциклирования в диапазонах 750–770 °С  
и 1070– 1090 °С происходит спекание волокон в композитах и формирование порового простран-
ства. В температурном интервале 750–770 °С поровое пространство формируется из мелких  
и крупных пор размером 1–5 мкм и 60–100 мкм соответственно. В температурном интервале 
1070–1090 °С из-за образования большого количества жидкой эвтектической фазы мелкие поры 
практически зарастают, крупные поры незначительно уменьшаются до размера 50–90 мкм. 
Термоциклирование в выбранных температурных интервалах позволяет регулировать поровое 
пространство. Увеличение давления прессования до 40 МПа и проведение трех циклов термо-
циклирования в температурном интервале 750–770 °С обеспечивает образование большего ко-
личества связей между волокнами и силлиманита (Al2O5Si) как упрочняющей фазы. Данный 
режим увеличивает предел прочности на сжатие до 9 МПа в сравнении с образцами, спрессован-
ными при давлении 20 МПа, имеющими предел прочности на сжатие 4 МПа. В образце, спрес-
сованном при 40 МПа, после трех циклов термоциклирования в диапазонах 750–770 °С (рис. 5)  
наблюдается уменьшение размера сквозных пор (максимальный – 72,10 мкм; средний – 5,26 мкм; 
минимальный – 0,87 мкм) относительно образцов, спрессованных при 20 МПа, при удовлетво-
рительной газовой проницаемости 7,89 · 10–12 м2.

При проведении трех циклов термоциклирования в температурном интервале 1070–1090 °С  
образцов II состава образование фаз анортита (CaAl2Si2O8) до 45 % и кварца (SiO2) до 48 % повы-

а

b

Рис. 5. Результаты исследования пористости, газовой проницаемости и размера пор образцов II состава  
после трех циклов термоциклирования в температурном интервале 750–770 °С:  

а – давление прессования 20 МПа; b – давление прессования 40 МПа
Fig. 5. Results of the study of porosity, gas permeability and pore size of samples of composition II after three cycles  

of thermal cycling in the temperature ranges of 750–770 °C: a – pressing pressure 20 MPa; b – pressing pressure 40 MPa
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шает предел прочности на сжатие до 50 МПа, однако ведет к зарастанию пор. Размер мелких  
пор образцов, спрессованных при 40 МПа, уменьшается до 0,65 мкм, крупных – до 51,90 мкм  
при их среднем размере 30,45 мкм относительно образцов, спрессованных при 40 МПа, что приво-
дит к снижению газовой проницаемости до 4,42 · 10–12 м2 и общей пористости – до 27,3 % (рис. 6).

Заключение. Исследованы пористые композиционные материалы составов (по массе): I – 37 % 
базальтовое волокно + 19 % муллитокремнеземистое волокно + 11 % модификатор Al2SO4 + 4 % фар- 
фор + 19 % порообразователь + 10 % пластификатор; II – 52 % базальтовое волокно + 13 %  
SiO2 + 10 % модификатор CaCO3 + 6 % фарфор + 12 % порообразователь + 7 % пластификатор, 
спрессованные при давлениях 20 и 40 МПа, после трех циклов термоциклирования в диапазонах 
температур 1025–1075 °С (I состав), 750–770 и 1070–1090 °С (II состав).

Определено, что в композитах I состава, спрессованных при 40 МПа, после трех циклов тер-
моциклирования в диапазоне температур 1025–1075 °С происходит уменьшение среднего разме-
ра пор от 59,0 до 15,2 мкм, проницаемости – от 30,9 · 10–12 до 13,8 · 10–12 м2 и открытой пористо-
сти – от 75,5 до 56,1 %, повышение предела прочности на сжатие – до 31,5 МПа.

Установлено, что увеличение давления прессования до 40 МПа и проведение трех циклов 
термоциклирования в температурном интервале 750–770 °С (II состав) обеспечивает образо- 
вание большего количества связей между волокнами и силлиманита (Al2O5Si) как упрочняющей 
фазы. Предел прочности на сжатие увеличивается до 9 МПа. После трех циклов термоцикли-

а

b

Рис. 6. Результаты исследования пористости, газовой проницаемости и размера пор образцов II состава  
после трех циклов термоциклирования в температурном интервале 1070–1090 °С: а – давление прессования 20 МПа; 

b – давление прессования 40 МПа
Fig. 6. Results of the study of porosity, gas permeability and pore size of samples of composition II after three cycles  

of thermal cycling in the temperature ranges 1070–1090 °C: a – pressing pressure of 20 MPa; b – pressing pressure of 40 MPa
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рования в диапазоне 750–770 °С (II состав) уменьшается размер сквозных пор (максимальный – 
72,10 мкм; средний 5,26 мкм; минимальный – 0,87 мкм) при удовлетворительной газовой прони-
цаемости в 7,89 · 10–12 м2.

Термоциклирование в температурном интервале 1070–1090 °С (II состав) приводит к образо-
ванию фаз – анортита (CaAl2Si2O8) до 45 % и кварца (SiO2) до 48 %, повышению предела проч-
ности на сжатие до 50 МПа, зарастанию пор. Размер мелких пор уменьшается до 0,65 мкм, круп- 
ных пор – до 51,90 мкм, снижаются газовая проницаемость до 4,42 · 10–12 м2 и общая пористость – 
до 27,3 %.

Результаты исследования показывают, что термоциклирование в выбранных диапазонах тем-
ператур 1025–1075 °С (I состав), 750–770 и 1070–1090 °С (II состав) позволяет регулировать раз-
мер пор, проницаемость, аморфность, состав и количество упрочняющих фаз для получения за-
данной структуры и прочности композитов.
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ЭКСПЛУАТАЦИОННЫЕ ХАРАКТЕРИСТИКИ ИОННО-ПЛАЗМЕННЫХ 
ТИТАНСОДЕРЖАЩИХ ПОКРЫТИЙ  

НА ТВЕРДОСПЛАВНЫХ ПЛАСТИНАХ BYTC1

Аннотация. Исследованы технологические характеристики твердосплавных пластин марки BYTC производ-
ства Института технологии металлов Национальной академии наук Беларуси (ИТМ НАН Беларуси) с упрочняю-
щими плазменными покрытиями TiN, TiAlSiCr, TiAlN, TiAlCrN. Показано, что основная фаза покрытий имеет ку-
бическую структуру, которая обеспечивает им высокую твердость (TiN – HV 2414; TiAlSiCr – HV 3570; TiAlN –  
HV 2692; TiAlCrN – HV 2647) и низкий коэффициент трения (0,25–0,40). Сплошная пленка толщиной 2,0–4,0 мкм 
с микротвердостью 2414–3570 HV наносилась на твердосплавную пластину с помощью технологии вакуумного на-
пыления (PVD). Установлено, что наиболее перспективными для промышленного использования являются покры- 
тия из нитрида титана (TiN) благодаря сравнительной простоте технологии и меньшей себестоимости нанесения, 
а также достаточно большому ресурсу рабочих кромок, что обеспечивает повышение в 4,1 раза стойкости твердо- 
сплавных пластин BYTC PNUA 110408 производства ИТМ НАН Беларуси с покрытием TiN при обработке коррози-
онностойкой стали марки 08ХГСДП. Разработанное покрытие может использоваться при изготовлении металлоре-
жущего твердосплавного инструмента (фрезы, сверла, пластины и др.). 
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OPERATIONAL CHARACTERISTICS OF ION PLASMA TITANIUM-CONTAINING COATINGS  
ON BYTC CARBIDE PLATES

Abstract. The technological characteristics of BYTC carbide inserts produced by the Institute of Metal Technology  
of the National Academy of Sciences of Belarus with TiN, TiAlSiCr, TiAlN, and TiAlCrN plasma coatings have been studied.  
It has been shown that the main phase of the coatings has a cubic structure, which provides them with high hardness  
(TiN – HV 2414; TiAlSiCr – HV 3570; TiAlN – HV 2692; TiAlCrN – HV 2647) and a low coefficient of friction (0.25–0.40). 
A 2.0–4.0 μm thick solid film with a microhardness of 2414–3570 HV was applied to a carbide plate using vacuum deposition 
(PVD) technology. It has been established that the most promising coatings for industrial use are TiN coatings due to their 
relative simplicity of technology and lower cost of application, as well as their relatively long service life, which ensures  
an increase in the durability of BYTC PNUA 110408 carbide inserts produced by Institute of Metal Technology of the National 
Academy of Sciences of Belarus with a TiN coating by a factor of 4.1 when processing 08ХГСДП corrosion-resistant steel. 
The developed coating can be used in the manufacture of metal-cutting carbide tools (milling cutters, drills, plates, etc.).
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Введение. В современном машиностроении используется большое количество деталей (валы,  
оси, фасонные изделия и др.) из коррозионностойких сталей, которые изготавливаются с по- 
мощью режущих инструментов с твердосплавными пластинами. Основной проблемой при обра- 
ботке таких деталей является быстрый износ режущей кромки твердосплавной пластины, что приво-
дит к поломке инструмента и, соответственно, увеличению затрат на сам инструмент и его замену,  
а в ряде случаев – и к неустранимому браку изготавливаемых деталей. В Институте технологии 
металлов НАН Беларуси освоили производство твердосплавных пластин под брендом BYTC (бе-
лорусский твердый сплав). 

Для решения указанных проблем инструментальные пластины защищаются покрытиями, 
которые блокируют химическую реакцию между режущим инструментом и деталью, что пре-
пятствует образованию трещин на пластине в процессе резания [1], обеспечивая повышение 
стойкости пластин от 1,3 до 8 раз, режимов резания – на 25–80 % [2]. Известны покрытия PVD 
(Physical Vapor Deposition), которые изготавливаются с использованием физического осажде-
ния из газовой среды и наносятся с помощью технологии вакуумного напыления [4–10], и CVD 
(Chemical Vapor Deposition) [4; 11–13], получаемые путем химического осаждения из газовой 
фазы. Данные покрытия применяются в основном на неперетачиваемых инструментах и пласти-
нах, так как на участках, подвергаемых заточке, они полностью разрушаются. 

На практике наибольшее распространение получил первый тип покрытий [2; 4]. Процессы 
PVD обладают широкими возможностями по управлению свойствами покрытия и по номенкла-
туре инструментальных подложек. Основные виды покрытий PVD имеют толщину 1,0–6,0 мкм, 
поэтому применимы для режущих кромок с маленьким радиусом скругления. Острые режущие 
кромки позволяют снизить усилия резания, улучшить стружкодробление, предотвратить вибра-
ции, а высокая температурная стабильность покрытий обеспечивает их целостность. Применение 
износостойких покрытий, наносимых методом PVD, позволяет наиболее существенно повысить 
стойкость режущего инструмента, предназначенного для фрезерной обработки, который более 
чувствителен к возможному снижению вязкости в поверхностной зоне из-за постоянной работы 
с переменными нагрузками [14], при обработке заготовок из жаропрочных, коррозионностойких 
сталей и т. д. 

Цель проведенных исследований – испытание твердосплавных пластин BYTC при обработ-
ке низколегированной коррозионностойкой стали марки 08ХГСДП и оценка эффективности ис-
пользования упрочняющих покрытий PVD различных составов для данных пластин. 

Методика исследования. Были исследованы покрытия TiN, TiAlSiCr, TiAlN, TiAlCrN, нане-
сенные методом PVD на твердосплавные пластины BYTC PNUA 110408, изготовленные из спла-
ва Т5К10 [3].

Для объективности исследования образцы были пронумерованы в случайном порядке. Напы- 
ление осуществлялось с использованием комплекса технологического оборудования по нанесе-
нию PVD-покрытий PLATIT компании ООО «Анай Бел ИТ», включающего установку Platit π111 
(Швейцария).

Исследование морфологии поверхности образцов, определение толщины полученных пленок 
и характерных размеров доменов наполнителя пленок осуществлялось методом спектральной  
электронной микроскопии (СЭМ) на растровых электронных микроскопах Hitachi S-4800 (Япония) 
с разрешающей способностью 1 нм при ускоряющем напряжении 15 кВ. Исследуемые материа-
лы фиксировались на подложке с помощью токопроводящей углеродной клейкой ленты. 

Для оценки с высокой точностью элементного состава (концентраций химических элемен-
тов) локального участка образцов как по всей поверхности, так и в точке или вдоль выделенной 
линии, а также для построения карт распределения химических элементов в приповерхностной 
области исследуемых структур был использован метод рентгеноспектрального микроанализа, 
который заключается в регистрации характеристического рентгеновского излучения с поверх-
ности образца, находящегося под электронным пучком. Исследования проводились методом 
энергодисперсионной рентгеновской спектроскопии (EDX) с использованием безазотного спек-
трометра Bruker QUANTAX 200 (США) к Hitachi S-4800.
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Фазовые составы образцов определялись на дифрактометре ULTIMA IV (Rigaku, Япония) 
с использованием геометрии параллельного пучка методом рентгенофазового анализа в медном 
(CuKα) излучении с длиной волны 0,15418 нм. Для оценки фазового состава покрытий образцы 
размещались на столике приставки для напряжений. Съемка образцов проводилась в диапазоне 
углов 2θ = 10–120° с шагом 0,05°, скоростью движения детектора 2°/мин и угле падения рентге-
новского пучка, равном 1°, для уменьшения влияния подложки.

Микротвердость измерялась методом Виккерса (HV, ед.) на микротвердомере ZHV 1M (Zwick/
Roell, Германия) при нагрузке 0,2 кгс. Результаты измерений, превышающие среднее значение 
на 10 %, исключались. Коэффициент трения определялся с помощью машины трения Tribometer  
(CSM Instruments, Швейцария) по схеме «шарик–диск» при нагрузках 2 и 5 Н и линейной ско- 
рости 10 см/с. Контртелом был шарик из твердого сплава WC6 диаметром 3 мм. Критическая  
нагрузка, при которой происходило разрушение и отслаивание покрытий при царапании алмаз-
ной пирамидой, определялась визуально с помощью оптического микроскопа с увеличением 200× 
по появлению трещин и сколов покрытия на установке Revetest (CSM Instruments, Швейцария). 

Механические испытания твердосплавных пластины BYTC PNUA 110408 с покрытиями TiN, 
TiAlSiCr, TiAlN, TiAlCrN проводились в лаборатории резания Института технологии метал-
лов НАН Беларуси на вертикально-фрезерном станке 6Р82Ш с использованием фрезы Ø63 мм. 
Обработке подвергались заготовки из коррозионностойкой стали 08ХГСДП твердостью 159–163 НВ, 
режим резания: скорость резания V = 110 м/мин; подача на зуб Sz = 0,17 мм/зуб; глубина реза- 
ния t = 1 мм. 

Результаты исследования и их обсуждение. Покрытие TiN. Изображения поверхности 
и поперечного сечения напыленной пленки из нитрида титана (TiN), полученные методом спек-
тральной электронной микроскопии, представлены на рис. 1. 

Покрытие TiN имеет кубическую структуру, которая обеспечивает ему высокую твердость, 
низкий коэффициент трения и оптимальную химическую стойкость. В результате формирует-
ся сплошная пленка толщиной 2,0–4,5 мкм с небольшим количеством поверхностных дефек-
тов в виде капель, углублений. Профиль поверхности нанесенного покрытия повторяет профиль 
материала заготовки. В структуре наблюдается наличие капельной фазы размером примерно  
от 1 до 5 мкм. 

Химический состав покрытия TiN представлен в табл. 1. Образец характеризуется незначи-
тельным избыточным содержанием азота, в состав материала подложки входят кислород и угле-
род. При нанесении может наблюдаться диффузия углерода из подложки образца на основе 
сложных карбидов.

Микроструктурный анализ показывает достаточно хорошую однородность, стехиометрич-
ность и целостность покрытия из нитрида титана. 

На рис. 2 показана рентгенограмма покрытия из TiN, нанесенного на твердосплавную пла-
стину, которая получена при угле падения рентгеновского пучка 1°.

        
			         a						      b

Рис. 1. СЭМ-изображения поверхности (а) и поперечного сечения (b) напыленной пленки TiN 
Fig. 1. SEM images of the surface (a) and cross section (b) of a sputtered TiN film
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Т а б л и ц а  1.  Химический состав покрытия TiN
T a b l e  1.  Chemical composition of TiN coating

Элемент
Element

Атомный номер
Atomic number

Нормированная весовая концентрация, мас.%
Normalized weight concentration, wt.%

Атомная концентрация, ат.%
Atomic concentration, at.%

Ошибка, ат.%
Error, at.%

N 7 22,77 49,13 3,1
Ti 22 75,76 47,82 2,4
O 8 1,01 1,91 0,4
C 6 0,45 1,14 0,2

Рис. 2. Рентгенограмма покрытия TiN на твердосплавной пластине
Fig. 2. X-ray image of TiN coated plate

Как видно, на рентгенограмме присутствуют дифракционные пики, соответствующие фазе  
TiN (Fm-3m) с гранецентрированной решеткой. Параметр решетки сформированного покры- 
тия TiN равен (0,42383 ± 0,00001) нм, что меньше значения, соответствующего эталону (0,42440 нм). 
На рентгенограмме также присутствуют дифракционные пики от подложки, соответствующие 
WC (P-6m2). Рентгенограмма образца, полученная при съемке в режиме Брэгга–Брентано (угол 
падения равен углу отражения), показала, что твердосплавная подложка представляет собой много- 
фазную систему: WC, TiC и Co. Ввиду малого угла падения рентгеновского пучка (1°) на рис. 2  
видна только самая интенсивная фаза WC. Также на рисунке присутствует дифракционный  
пик при 2θ = 26,65°, соответствующий оксиду титана (TiO).

Покрытие TiN может эффективно использоваться при обработке резанием, давлением, для за-
щиты литейных форм и снижения трения в деталях машин, для упрочнения режущих инстру-
ментов, подшипников и штампов, а также предотвращения налипания обрабатываемого материа- 
ла на инструмент.

Покрытие TiAlSiCr. Изображения поверхности и поперечного сечения напыленной пленки 
TiAlSiCr представлены на рис. 3.

Химический состав покрытия TiAlSiCr указан табл. 2. Определяемые химические элементы 
кислород, углерод и хром обусловлены материалом подложки. При нанесении покрытия также 
может наблюдаться диффузия углерода из матрицы на основе сложных карбидов.

На рис. 4 показана рентгенограмма нанесенного на твердосплавную пластину покрытия AlTiSiCr, 
полученная при угле падения рентгеновского пучка 1°. Видно, что на рентгенограмме присут-
ствуют фазы покрытия ((Ti,Al)N и h-AlN) и подложки (WC).

На рентгенограмме отмечаются также дифракционные пики, соответствующие отражению 
от гранецентрированной решетки нитрида титана и смещенные в область больших углов 2θ, 
что позволило определить эти пики как соответствующие фазе твердого раствора замещения 
(Ti, Al)N. Расчет параметра решетки твердого раствора показал значение (0,41952 ± 0,00005) нм,  
что меньше полученного ранее для TiN. Добавление алюминия в решетку TiN приводит к умень-



Весці Нацыянальнай акадэміі навук Беларусі. Серыя фізіка-тэхнічных навук. 2025. Т. 70, № 4. С. 285–295  
Proceedings of the National Academy of Sciences of Belarus. Physical-technical series, 2025, vol. 70, no. 4, рр. 285–295290

шению параметра решетки твердого раствора, так как радиус алюминия меньше, чем у титана. 
На рентгенограмме выявлена и фаза AlN с гексагональной плотной упаковкой, интенсивность 
дифракционных пиков которой значительно ниже, чем у твердого раствора. Формирование 
фазы AlN происходит из-за частичной сегрегации алюминия на границе зерен твердого раство-
ра (Ti, Al)N, в результате чего формируется нанокомпозитное покрытие на основе кристалличе-
ских зерен (Ti, Al)N и аморфной матрицы h-AlN. Как видно из рис. 4, твердый раствор (Ti, Al)
N имеет преимущественную ориентацию (200), что характерно для нанокомпозитных покрытий. 
На рентгенограмме так же, как и для TiN, присутствуют дифракционные пики подложки (WC), 
при этом отсутствуют дифракционные пики, соответствующие фазам, содержащим Si и Cr, ко-
торые ввиду малой их концентрации сегрегируют на границах зерен (Si) основных фаз или вхо-
дят в фазу твердого раствора (Cr).

        
			         a						      b

Рис. 3. СЭМ-изображения поверхности (а) и поперечного сечения (b) напыленной пленки AlTiSiCr 
Fig. 3. SEM images of the surface (a) and the cross section (b) of a sputtered AlTiSiCr film

Т а б л и ц а  2.  Химический состав покрытия TiAlSiCr
Ta b l e  2.  Chemical composition of TiAlSiCr coating

Элемент
Element

Атомный номер
Atomic number

Нормированная весовая концентрация, мас.%
Normalized weight concentration, wt.%

Атомная концентрация, ат.%
Atomic concentration, at.%

Ошибка, ат.%
Error, at.%

N 7 24,22 45,12 3,3
Ti 22 50,72 27,64 1,5
Al 13 16,02 15,49 0,8
C 6 1,93 4,20 0,5
Si 14 3,74 3,48 0,2
O 8 2,10 3,43 0,6
Cr 24 1,26 0,63 0,1

Рис. 4. Рентгенограмма покрытия TiAlSiCr на твердосплавной пластине
Fig. 4. X-ray image of the TiAlSiCr coating on a carbide plate
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Покрытие TiAlSiCr, являющееся нанокомпозитным покрытием, в котором нанокристалличе-
ские зерна внедрены в аморфную матрицу, и имеющее максимально высокую твердость и тем-
пературную стойкость, используется для высокоскоростной обработки («сухая» высокоскорост-
ная) и для нормальных условий механической обработки. Покрытие достаточно хрупкое, но хо-
рошо работает в «сухих» условиях (чем выше скорость и температура в зоне резания, тем выше  
производительность).

Покрытие TiAlN. Данный тип покрытия широко используется в режущих инструментах 
в качестве износостойкой защиты в силу его высокой химической стабильности, отличной стой-
кости к окислению и высокой износостойкости. Однако покрытия TiAlN, полученные тради-
ционными методами, часто имеют столбчатую структуру и высокий коэффициент трения. Эти 
свойства делают их склонными к образованию трещин и сильному адгезионному износу при 
обработке титана. Поэтому важно улучшить структуру и свойства покрытий TiAlN, чтобы обес- 
печить возможность механической обработки титановых сплавов. Одним из перспективных  
направлений совершенствования покрытий является использование адгезионных слоев. Эти слои  
характеризуются низким коэффициентом трения при трибоиспытаниях, что приводит к низкой 
скорости изнашивания. Изображения поверхности пленки TiAlN и поперечного сечения напы-
ленной пленки представлены на рис. 5.

Химический состав покрытия TiAlN указан табл. 3. Атомное соотношение титана к алюми-
нию составляет 2 : 1, что приводит к формированию твердого раствора (Ti, Al)N и фазы нитри-
да титана.

Т а б л и ц а  3.  Химический состав покрытия TiAlN
T a b l e  3.  Chemical composition of TiAlN coating

Элемент
Element

Атомный номер
Atomic number

Нормированная весовая концентрация, мас.%
Normalized weight concentration, wt.%

Атомная концентрация, ат.%
Atomic concentration, at.%

Ошибка, ат.%
Error, at.%

N 7 24,02 41,83 3,3
Ti 22 44,73 22,79 1,4
Al 13 22,83 20,64 1,1
C 6 3,74 7,59 0,8
O 8 4,69 7,15 1,0

На рис. 6 представлена рентгенограмма нанесенного на твердосплавную пластину покрытия 
TiAlN, полученная при угле падения рентгеновского пучка 1°. Она близка к рентгенограмме по-
крытия TiAlSiCr.

Анализ рентгенограммы показывает, что покрытие TiAlN представляет собой двухфаз- 
ную систему: твердый раствор (Ti, Al)N и h-AlN. Параметр решетки твердого раствора равен 
(0,41732 ± 0,00003) нм. Значение параметра решетки твердого раствора (Ti, Al)N для покрытия 

        
			           a						       b

Рис. 5. СЭМ-изображения поверхности (а) и поперечного сечения (b) напыленной пленки TiAlN 
Fig. 5. SEM images of the surface (a) and cross section (b) of a sputtered TiAlN film
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TiAlN меньше, чем для TiAlSiCr. Также присутствуют дифракционные пики подложки (WC). 
Как и в случае покрытия TiAlSiCr, покрытие TiAlN представляет собой нанокомпозитную систе-
му на основе кристаллических зерен (Ti, Al)N с преимущественной ориентацией (200) и аморф-
ной матрицы h-AlN.

Покрытие TiAlN является специальным покрытием для сухой высокоскоростной обработки 
резанием и особенно для твердой обработки в условиях прерывистого резания материалов с вы-
сокой прочностью при растяжении, нержавеющих видов стали и износоустойчивых материалов. 
Благодаря своей высокой химической стабильности, отличной стойкости к окислению и высокой 
износостойкости оно может использоваться в режущих инструментах в качестве износостойкой 
защиты [15]. 

Полученные традиционными методами покрытия TiAlN имеют столбчатую структуру и вы-
сокий коэффициент трения, что делает их склонными к образованию трещин и сильному адге-
зионному износу при обработке титана. Поэтому важно улучшить структуру и свойства покры-
тий TiAlN, чтобы обеспечить возможность механической обработки титановых сплавов. Одним 
из перспективных решений данной задачи является использование адгезионных слоев, которые  
характеризуются низким коэффициентом трения при трибоиспытаниях, что приводит к сниже-
нию скорости изнашивания. 

Покрытие TiAlCrN. Данное покрытие является универсальным и используется при меха-
нической обработке со смазочно-охлаждающими жидкостями и без них для формования и пер-
форации, фрезерования и зубофрезерования. Изображения поверхности и поперечного сечения 
напыленной пленки TiAlCrN представлены на рис. 7.

Сплошная пленка покрытия формируется толщиной до 1 мкм с небольшим количеством по-
верхностных дефектов в виде капель, углублений. Профиль поверхности нанесенного покрытия 
повторяет профиль материала заготовки. В структуре наблюдается наличие капельной фазы раз-
мером примерно от 0,2 до 1 мкм (см. рис. 7). 

Химический состав покрытия TiAlCrN указан в табл. 4. Микроструктурный анализ показы-
вает достаточно хорошую однородность, стехиометричность и целостность покрытия. Атомное 
соотношение титана к алюминию составляет 2 : 1, что способствует формированию твердого 
раствора (Ti, Al)N и фазы нитрида титана. На рис. 8 показана рентгенограмма покрытия TiAlCrN, 
нанесенного на твердосплавную пластину, которая получена при угле падения рентгеновского 
пучка 1°.

Данная рентгенограмма близка к рентгенограммам покрытий TiAlSiCr и TiAlN. Ее анализ 
показывает, что покрытие TiAlCrN представляет собой двухфазную систему: твердый раствор 
(Ti, Al)N и h-AlN. Параметр решетки твердого раствора равен (0,41687 ± 0,00003) нм, то есть 
меньше, чем для TiAlN. Также присутствуют дифракционные пики подложки (WC).

Рис. 6. Рентгенограмма покрытия TiAlN на твердосплавной пластине
Fig. 6. X-ray image of the TiAlN coating on a carbide plate
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Т а б л и ц а  4.  Химический состав покрытия TiAlCrN
Ta b l e  4.  Chemical composition of TiAlCrN coating

Элемент
Element

Атомный номер
Atomic number

Нормированная весовая концентрация, мас.%
Normalized weight concentration, wt.%

Атомная концентрация, ат.%
Atomic concentration, at.%

Ошибка, ат.%
Error, at.%

N 7 25,48 46,68 3,4
Ti 22 47,33 25,37 1,4
Al 13 22,30 21,21 1,1
C 6 1,61 3,43 0,4
O 8 1,53 2,45 0,5
Cr 24 1,76 0,87 0,1

Рис. 8. Рентгенограмма покрытия TiAlCrN на твердосплавной пластине
Fig. 8. X-ray image of the TiAlCrN coating on a carbide plate

Сравнительный анализ исследуемых покрытий. Результаты измерений микротвердости 
и коэффициентов трения покрытий TiN, TiAlSiCr, TiAlN, TiAlCrN приведены в табл. 5.

Т а б л и ц а  5.  Значения микротвердости и коэффициента трения покрытий TiN, TiAlSiCr, TiAlN, TiAlCrN
Ta b l e  5.  Microhardness and coefficients of TiN, TiAlSiCr, TiAlN, TiAlCrN coating

Покрытие
Coating

Микротвердость HV, ед.
Microhardness HV, units

Коэффициент трения покрытия
Coefficient of friction of the coatingКоличество измерений

Number of measurements Среднее значение
Average value

1 2 3

TiN 2455 2286 2501 2414 0,25
TiAlSiCr 3751 3668 3292 3570 0,40
TiAlN 2644 2547 2886 2692 0,31
TiAlCrN 2640 2501 2800 2647 0,34

        
			               a					                   b

Рис. 7. СЭМ-изображения поверхности (а) и поперечного сечения (b) напыленной пленки TiAlCrN 
Fig. 7. SEM images of the surface (a) and cross section (b) of a sputtered TiAlCrN film
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На рис. 9 показаны зависимости величины износа по задней поверхности (hз) режущего лез-
вия твердосплавных пластин BYTC PNUA 110408 без покрытия и с покрытиями.

Для указанных выше режимов резания все исследуемые твердосплавные пластины BYTC 
PNUA 110408 с покрытиями TiN, TiAlSiCr, TiAlN, TiAlCrN показали повышение стойкости  
в 3,3–4,1 раза относительно таких же пластин, но без покрытия. Среди исследуемых покрытий  
при обработке коррозионностойкой стали 08ХГСДП наибольшее повышение стойкости (в 4,1 раза) 
показали твердосплавные пластины BYTC PNUA 110408 с покрытием TiN (рис. 10). Кроме того, 
покрытие TiN является наиболее экономически выгодным.

Заключение. Выполнен анализ покрытий TiN, TiAlSiCr, TiAlN, TiAlCrN, нанесенных с помо-
щью технологии вакуумного напыления PVD на твердосплавные пластины BYTC PNUA 110408.

Показано, что основная фаза покрытий имеет кубическую структуру, которая обеспечивает  
им высокую твердость (TiN – HV 2414; TiAlSiCr – HV 3570; TiAlN – HV 2692; TiAlCrN –  
HV 2647) и низкий коэффициент трения (0,25–0,40). 

Методом PVD на твердосплавной пластине формируется сплошная пленка толщиной  
2,0–4,5 мкм с микротвердостью (2414–3570) HV, при этом образующиеся на поверхности покры-
тия в небольшом количестве поверхностные дефекты в виде капельной фазы размером примерно 
от 1 до 5 мкм и углублений не оказывают существенного влияния на качество покрытий. 

Установлено, что наиболее перспективными для промышленного использования являются 
покрытия из нитрида титана TiN. Благодаря сравнительной простоте технологии нанесения, 
меньшей себестоимости нанесения и достаточно большому ресурсу рабочих кромок обеспечива-
ется повышение в 4,1 раза стойкости твердосплавных пластин BYTC PNUA 110408 с покрытием 
TiN при обработке коррозионностойкой стали 08ХГСДП.
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ОЦЕНКА НАПРЯЖЕННО-ДЕФОРМИРОВАННОГО СОСТОЯНИЯ 
НАПРАВЛЯЮЩИХ ШАХТНОГО СТВОЛА С УЧЕТОМ ДИНАМИКИ 
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Аннотация. Рассматривается задача контактного взаимодействия роликов клети (лифта) шахтного подъемного 
комплекса с направляющими проводниками при эксплуатации системы лифтоподъемника в вентиляционном стволе 
с учетом динамики движения воздушных потоков. Изучено влияние различных режимов работы вентиляционной 
установки, а также движения клети и противовеса на параметры контактного взаимодействия, возникающего между 
роликами клети и направляющими проводниками. Разработана численная модель контактного взаимодействия ро-
ликов клети с шахтными направляющими проводниками на основе метода конечных элементов. Построенная конеч-
но-элементная модель позволяет производить оценку напряженно-деформированного состояния конструкционных 
элементов направляющих устройств при различных конфигурациях силового воздействия со стороны клети, а так-
же определять величины критических нагрузок, которые могут вызывать остаточные деформации в направляющих 
проводниках. Анализ результатов исследований показал, что аэродинамические силы, возникающие при эксплуата-
ции шахтных подъемных комплексов, оказывают существенное влияние на напряженно-деформированное состоя- 
ние данной геотехнической системы, что подчеркивает необходимость их учета при проектировании элементов 
шахтного подъемного комплекса. Полученные результаты могут быть использованы для обеспечения безопасной 
и безаварийной эксплуатации шахтных подъемных комплексов путем оптимизации их конструкций при проекти-
ровании для минимизации напряжений в узле контакта роликов клети с шахтными направляющими проводниками, 
а также для разработки рекомендаций по замене направляющих устройств в условиях многоциклового воздействия 
со стороны роликов клети.

Ключевые слова: контактное взаимодействие, ролик клети, направляющие проводники, вентиляционный ствол, 
механико-математическая модель, численная модель, метод конечных элементов, шахтный подъемный комплекс 

Конфликт интересов: авторы заявляют об отсутствии конфликта интересов.
Информация об авторах: Журавков Михаил Анатольевич – доктор физико-математических наук, профессор, 

заведующий кафедрой теоретической и прикладной механики механико-математического факультета Белорусского 
государственного университета, https://orcid.org/0000-0002-7420-5821, e-mail: Zhuravkov@bsu.by; Николайчик Ми- 
хаил Александрович – кандидат физико-математических наук, заведующий научно-исследовательской лабораторией 
прикладной механики механико-математического факультета Белорусского государственного университета, https://
orcid.org/0000-0003-3733-1615, e-mail: NikolaitchikMA@bsu.by; Климкович Никита Михайлович – младший научный 
сотрудник научно-исследовательской лаборатории прикладной механики механико-математического факульте-
та Белорусского государственного университета, https://orcid.org/0009-0001-7204-1974, e-mail: nikita.klimkovitch@
yandex.ru; Карпович Иван Николаевич – младший научный сотрудник научно-исследовательской лаборатории при-
кладной механики механико-математического факультета Белорусского государственного университета, https://
orcid.org/0009-0003-5056-3880, e-mail: KarpovichIN@bsu.by; Морочковский Иван Владимирович – начальник горно-
го отдела ООО «Проектирование горнорудных предприятий», https://orcid.org/0009-0000-2230-1494, e-mail: ivan.
morochkovski@pgrp.by 

* Автор, ответственный за переписку / Corresponding author.



Весці Нацыянальнай акадэміі навук Беларусі. Серыя фізіка-тэхнічных навук. 2025. Т. 70, № 4. С. 296–306 
Proceedings of the National Academy of Sciences of Belarus. Physical-technical series, 2025, vol. 70, no. 4, рр. 296–306 297

Вклад авторов: Журавков Михаил Анатольевич – обоснование концепции исследования, формулировка цели, 
задачи исследования, выводов; Николайчик Михаил Александрович – создание модели исследования, постановка за-
дачи, обобщение результатов исследования, работа с графическими материалами; Климкович Никита Михайлович –  
создание геометрической и конечно-элементной модели, моделирование процесса нагружения роликов; Карпо- 
вич Иван Николаевич – определение нагрузок, действующих со стороны клети на ролики, редактирование текста 
рукописи, оформление рукописи; Морочковский Иван Владимирович – анализ и систематизация исходных и полу-
ченных в рамках исследования данных.

Для цитирования: Оценка напряженно-деформированного состояния направляющих шахтного ствола с учетом 
динамики воздушных потоков / М. А. Журавков, М. А. Николайчик, Н. М. Климкович [и др.] // Весці Нацыянальнай 
акадэміі навук Беларусі. Серыя фізіка-тэхнічных навук. – 2025. – Т. 70, № 4. – С. 296–306. https://doi.org/10.29235/1561-
8358-2025-70-4-296-306

Поступила в редакцию: 22.04.2025
Доработанный вариант: 14.11.2025
Утверждена к публикации: 03.12.2025
Подписана в печать: 19.12.2025

Original article

Michael A. Zhuravkov1, Mikhail A. Nikolaitchik1, Nikita M. Klimkovich1,  
Ivan N. Karpovich1*, Ivan V. Morochkovski2

1Belarusian State University, 4, Nezavisimosti Ave., 220030, Minsk, Republic of Belarus 

2LLC “Design of Mining Enterprises”, 169, Nezavisimosti Ave., 220024, Minsk, Republic of Belarus

ASSESSMENT OF THE MINE SHAFT GUIDES STRESS-STRAIN STATE UNDER  
THE ELEVATOR FORCE IMPACT CAUSED BY THE DYNAMICS OF AIRFLOW MOTION

Abstract. This study addresses the problem of contact interaction between the rollers of a mine hoist cage (elevator)  
and the guide conductors during the operation of a hoist system in a ventilation shaft, taking into account the dynamics  
of airflow. The influence of various operating modes of the ventilation system, as well as the movement of the cage  
and counterweight, on the parameters of the contact interaction arising between the cage rollers and guide conductors  
has been investigated. A numerical model of the contact interaction between the cage rollers and mine guide conductors  
has been developed based on the finite element method. The constructed finite element model allows for the assessment  
of the stress-strain state of the structural elements of the guiding devices under various configurations of force exerted  
by the cage, as well as for determining the magnitudes of critical loads that can cause residual deformations in the guide 
conductors. Analysis of the research results has shown that aerodynamic forces arising during the operation of mine hoist 
complexes significantly influence the stress-strain state of this geotechnical system, highlighting the necessity of accounting 
for them in the design of mine hoist components. The obtained results can be used to ensure the safe and failure-free opera-
tion of mine hoist complexes by optimizing their designs during the planning stage to minimize stresses in the contact node 
between the cage rollers and mine guide conductors, as well as to develop recommendations for replacing guide devices under 
conditions of multi-cycle loading from the cage rollers.
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Введение. Канатный транспорт входит в систему подъемного комплекса, являющегося от-
ветственным элементом горнодобывающего предприятия с подземным способом разработки 
полезных ископаемых. Безопасность шахтного подъемного комплекса обеспечивается надежной 
и безаварийной работой многочисленных его элементов.

Подъемный комплекс представляет собой сложную систему, состоящую из множества эле-
ментов и требующую решения широкого перечня модельных задач механики, возникающих 
при детальном изучении состояния как отдельных элементов, так и всего комплекса в целом. 
Исследования по данному направлению охватывают большой диапазон фундаментальных и при-
кладных задач. Часть работ посвящена моделированию состояния элементов шахтного подъем-
ного комплекса при различных условиях нагружения и эксплуатации [1; 2] в рамках концепций 
и подходов механики деформируемого твердого тела (см., например, [3–5]). Определенные ис-
следования связаны с моделированием движения [6–8] и изучением колебаний системы [9; 10] 
с применением классических законов теоретической механики. Помимо этого, в значительном 
количестве работ рассматриваются процессы движения потоков воздуха в шахтном стволе  
[11–13] и шахте [14; 15]. Также довольно широко исследуются процессы контактного взаимодей-
ствия [16; 17] и многоциклового износа контактных пар и, в частности, роликов клети (см., на-
пример, [18–20]).

В настоящей статье рассматривается один из элементов системы «лифтоподъемник – шахт-
ный направляющий проводник (далее – направляющая) и ролик клети» (далее – ролик). В ранее 
выполненных исследованиях движения клети в вентиляционном стволе установлено, что в мо-
менты сближения клети и противовеса возникают области пониженного и повышенного давления, 
приводящие к появлению колебаний данного оборудования [11]. Такие колебания гасятся подпру-
жиненными роликами клети, оказывающими силовое воздействие на шахтные направляющие. 
На рис. 1 приведено распределение давления в случае, когда воздушный поток направлен на-
встречу движению клети. Анализ картины обтекания показывает, что перед клетью формиру-
ется зона повышенного давления, которое воздействует не только на ее нижнюю поверхность, 

но и передается далее на противовес. Одновременно с этим вокруг 
боковой части клети возникают обширные области отрицательного 
давления. Совместное действие этих факторов приводит к возникно-
вению сил, оказывающих влияние на колебание клети. 

Цель настоящей работы – исследование влияния аэродинами-
ческих сил, возникающих в системе при движении клети и проти-
вовеса, на напряженно-деформированное состояние (НДС) системы 
«ролики клети – шахтные направляющие». В силу отсутствия фак-
тических данных о жесткостях пружин в роликах клети, обеспечи- 
вающих непрерывный контакт с направляющей, в работе рассмотре-
но несколько вариантов. 

Постановка задачи. Модельная задача связана с исследованием 
контактного взаимодействия роликов клети с направляющей, вызван-
ного динамикой движения воздушных потоков в шахтном стволе 
при движении клети и противовеса. При проведении модельных ис-
следований рассмотрена конструкция шахтного лифтоподъемника 
с четырьмя ограничительными направляющими. По каждой направ-
ляющей движется набор из трех или шести роликов, расположенных 
с разных сторон направляющей (рис. 2). 

Рис. 1. Распределение 
давления в окрестности лифта 

и противовеса, Па
Fig. 1. Pressure distribution  

in the vicinity of the elevator 
and counterweight, Pa
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Для исследуемой системы была выбрана направ-
ляющая таврового сечения, так как такой профиль  
не только используется в специализированных шахт-
ных подъемниках, но и широко применяется в грузо- 
вых и грузопассажирских лифтах. Таким образом, пред- 
ложенная методика представляет интерес для горной 
промышленности и для других областей, где исполь- 
зуются направляющие таврового профиля.

Методология исследований. Построение математи- 
ческой модели для выполнения аналитических расче-
тов взаимодействия роликов и направляющих является 
достаточно сложным. Геометрические особенности, та- 
кие как фаски, скругления и профиль направляющих, 
а также вариативность жесткостей пружин, обеспечи-
вающих непрерывный контакт роликов с направля- 
ющими, значительно усложняют процесс построения  
аналитических решений. Учитывая данные обстоятель-
ства, решение модельной задачи строилось численно  
на основе метода конечных элементов. Численная мо-
дель (без учета трения между роликом и направляющей) 
была верифицирована с использованием известного 
аналитического решения задачи Герца [1].

В качестве материала ролика и направляющей была принята сталь, а обода ролика – резина. 
Физико-механические свойства перечисленных материалов приведены в табл. 1 [21; 22].

Т а б л и ц а  1.  Физико-механические свойства материалов
Ta b l e  1.  Physical and mechanical properties of materials

Название материала
Name of the Material

Плотность, кг/м3

Density, kg/m3
Модуль Юнга, ГПа
Young’s modulus, GPa

Коэффициент Пуассона
Poisson’s ratio

Предел текучести, МПа
Yield strength, MPa

Предел прочности, МПа
Ultimate strength MPa

Сталь
Steel 7 850 200 0,30 250 490

Резина
Rubber 1 200 0,80 0,48 – –

Геометрическая модель направляющей. Длина направляющей составляла 4 м. Вид попереч-
ного сечения направляющей – тавровый профиль T89 (ГОСТ Р 71033–2023)1. Диаметр ролика – 
0,17 м, толщина слоя резины – 0,012 м, ширина слоя резины – 0,34 м. При проведении численных 
расчетов ролики располагались по центру направляющей. Данный случай рассматривался как наи-
более неблагоприятный с точки зрения НДС в шахтной направляющей. Значение коэффициента 
трения между роликом и направляющей принималось равным 0,7 [23; 24]. 

В процессе движения ролики клети оказывают силовое воздействие на направляющую. 
Исследовалось НДС направляющей в случаях контакта с одним, а также двумя роликами одно-
временно, расположенными по нормали к направляющей или параллельно ей. Несмотря на то 
что конструкция имеет три или шесть роликов, одновременно на направляющую могут действо-
вать только два (для противовеса, см. рис. 2) или четыре ролика (для клети). Ролики, закреплен-
ные на подпружиненных кронштейнах, прижимаются к рабочей грани направляющего провод- 
ника с определенным усилием, обеспечивая непрерывный контакт.

В случае воздействия четырех роликов расстояние между их осями составляет 0,27 м. При 
моделировании узла контакта между противовесом и направляющей были рассмотрены следу- 
ющие варианты граничных условий (рис. 3):

1) сила прикладывается только к ролику/роликам, расположенным по одной линии, перпен-
дикулярно к направляющей по оси X – сила Fx; 

1 ГОСТ Р 71033–2023. Лифты. Направляющие для кабин и противовесов. Основные параметры и размеры.  
М.: Рос. ин-т стандартизации, 2023. 23 с. URL: https://meganorm.ru/Data/816/81617.pdf 

Рис. 2. Пример узла контакта трех  
и шести роликов с направляющей

Fig. 2. Example of the contact node of three  
and six rollers with the guide
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2) нагрузка прикладывается только к ролику/
роликам, расположенным на боковой грани на-
правляющей, перпендикулярно направляющей по 
оси Z – сила Fz; 

3) нагрузка прикладывается к двум/четырем 
роликам одновременно – Fx и Fz. 

По краям направляющей принималось ограни-
чение по всем степеням свободы.

Силы Fx и Fz были определены в результате ре-
шения задачи по нахождению аэродинамических 
сил, действующих на клеть и противовес соответ- 
ственно при их движении в вентиляционном ство-
ле в рамках ранее проведенных исследований [11]. 
Значения данных сил был получены для различ-
ных жесткостей пружин роликов, обеспечивающих  
их контакт с направляющими. Также учтен ши-

рокий спектр возможных режимов движения клети и противовеса, включая различные режи-
мы вентиляции.

Результаты исследований и их обсуждение. В моменты сближения клети и противовеса 
при движении в вентиляционном шахтном стволе возникают области перепада давлений, кото-
рые вызывают их колебания. 

В рамках исследований моделировались различные режимы движения клети с противовесом 
и потока воздуха в шахтном стволе. Рассматривалось движение клети вниз и противовеса вверх, 
клети вверх и противовеса вниз. Стоит отметить, что вентиляция также может работать в двух 
режимах: поток воздуха направлен из основания шахтного ствола вверх или поток воздуха по-
ступает в шахтный ствол с земной поверхности. Таким образом, были рассмотрены все возмож-
ные случаи динамики движения воздушных потоков.

В табл. 2 представлены результаты моделирования контактного взаимодействия ролика и на-
правляющей для трех вариантов граничных условий с учетом сил, создаваемых подпружинен-
ным механизмом роликов.

Оценка запаса прочности направляющей производилась по следующим критериям:
1) σint ≥ σ – критерий интенсивности напряжений, МПа;
2) ǀσ3ǀ ≥ σ, σ3 < 0 – критерий максимальных сжимающих напряжений, МПа;
3) σ1 ≥ σ, σ1 > 0 – критерий максимальных растягивающих напряжений, МПа,

где 
2 2 2

1 2 2 3 3 1
int

( ) ( ) ( )
2

σ −σ + σ −σ + σ −σ
σ =  – интенсивность напряжений, σ1 – первое глав-

ное напряжение, σ2 – второе главное напряжение, σ3 – третье главное напряжение, σ1 – предел те-
кучести.

Анализ результатов численного моделирования НДС конструкций направляющей при силовом 
воздействии со стороны клети (противовеса) в соответствии с выбранным диапазоном жестко-
стей пружин показал, что минимальный запас прочности направляющей относительно предела  
текучести на ее концах по критерию максимальных растягивающих напряжений, составляет 1,6; 
минимальный запас прочности направляющей относительно передела текучести в районе кон-
тактного взаимодействия ролика и направляющей по критерию максимальных сжимающих на-
пряжений – 2,5.

При этом минимальный запас прочности направляющей на ее концах относительно предела 
прочности составляет 3,0, а минимальный запас прочности направляющей в районе контактного 
взаимодействия ролика и направляющей относительно предела прочности – 4,8.

Также были получены значения минимальных нагрузок на ролики, приводящие к возник-
новению остаточных деформаций в направляющей. Для нахождения предельных значений на-
грузок, при которых превышается предел текучести направляющей, рассматривались варианты 
граничных условий 1 и 2.

Рис. 3. Схема сил, действующих на направляющую 
со стороны роликов

Fig. 3. Scheme of forces acting on the guide from  
the rollers
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Так, превышение предела текучести в случае одного контактного узла (одного ролика) для 
варианта граничных условий 1 имеет место при воздействии силы величиной более 4 400 Н (пре-
вышение предела текучести на концах направляющей) и/или 5 900 Н (превышение предела теку-
чести в районе контактного взаимодействия); для граничных условий 2 – соответственно 2 200 Н  
(превышение предела текучести на концах направляющей) и/или 3 900 Н (превышение предела 
текучести в области контакта). На рис. 4, 5 показано распределение напряжений в ситуациях, 
когда превышен предел текучести для рассмотренных вариантов. 

Результаты численного моделирования показали, что в случае двух контактных узлов (двух 
роликов) при варианте граничных условий 1 для превышения предела текучести на концах на-
правляющей необходимо приложить нагрузку 2 200 Н или 3 500 Н – для превышения предела те-
кучести в районе контактного взаимодействия; для варианта граничных условий 2 – 2 200 Н для 
превышения предела текучести на концах направляющей и/или 3 900 Н – для превышения пре-
дела текучести в области контакта к каждому ролику. Соответствующие значения напряжений 
получены также для случаев воздействия двух роликов на направляющую (рис. 6, 7).

Заключение. В рамках исследований разработана численная модель контактного взаимодей-
ствия роликов клети с направляющими с учетом динамики движения воздушных потоков в вен-
тиляционном стволе. При проведении расчетов учтено влияние различных режимов работы вен-
тиляции и динамики движения клети и противовеса.

В результате получено распределение НДС контактной пары «ролик клети – направляющая» 
для различных конфигураций силового воздействия на направляющие. Помимо этого, вычисле-
ны значения критических нагрузок на ролики, вызывающие возникновение остаточных дефор-
маций в направляющей, для различных вариантов контактного взаимодействия. 

Рис. 4. Распределение максимальных главных 
напряжений на концах направляющей, МПа

Fig. 4. Distribution of maximum principal stresses  
at the ends of the guide, MPa

Рис. 5. Распределение минимальных главных 
напряжений в районе контактного взаимодействия, МПа

Fig. 5. Distribution of minimum principal stresses  
in the area of contact interaction, MPa

Рис. 6. Распределение максимальных главных 
напряжений на концах направляющей, МПа

Fig. 6. Distribution of maximum principal stresses  
at the ends of the guide, MPa

Рис. 7. Распределение минимальных главных 
напряжений в районе контактного взаимодействия, МПа

Fig. 7. Distribution of minimum principal stresses 
in the area of contact interaction, MPa
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Исследования показали, что аэродинамические силы играют существенную роль в форми-
ровании НДС системы «ролики клети – шахтные направляющие», что подчеркивает необходи-
мость их учета при проектировании элементов шахтного подъемного комплекса.

Полученные в работе результаты могут быть использованы для решения прикладных задач, 
связанных с расчетами НДС и прочности конструкционных элементов шахтного подъемного 
комплекса в условиях воздействия аэродинамических сил с целью повышения эксплуатацион-
ной долговечности и безопасности рассматриваемой геотехнической системы.
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РАЗРАБОТКА ТЕХНОЛОГИЧЕСКИХ СХЕМ СЛОЕВОЙ ВЫЕМКИ  
ТРЕТЬЕГО КАЛИЙНОГО ПЛАСТА ДЛЯ ГЛУБОКИХ УЧАСТКОВ  

ШАХТНОГО ПОЛЯ РУДНИКА ЧЕТВЕРТОГО РУДОУПРАВЛЕНИЯ  
ОАО «БЕЛАРУСЬКАЛИЙ»12

Аннотация. С учетом накопленного на Старобинском месторождении практического опыта были разработа-
ны четыре варианта технологических схем слоевой выемки Третьего калийного пласта на глубине свыше 900 м. 
Сравнение представленных вариантов технологических схем осуществлялось по следующим показателям: удель-
ный объем горно-подготовительных работ; среднее содержание хлористого калия и нерастворимого остатка в руде; 
объем добычи руды в стандарте; коэффициент извлечения полезного компонента из недр. Отмечено, что более 
эффективными являются технологические схемы с последовательным порядком отработки выемочных столбов,  
где выемочные (панельные) выработки проводят отдельно для верхней и нижней лав, а существенным недостатком, 
усложняющим работу забойного конвейера и ведущим к ухудшению качества руды, является наличие в верхней 
лаве наклонного участка. Выбор определенного варианта слоевой выемки Третьего пласта с вовлечением в отработ-
ку 4-го сильвинитового слоя на глубинах более 900 м предлагается осуществлять с учетом привязки к горно-геоло-
гическим и горнотехническим условиям конкретного участка шахтного поля, поскольку представленные в работе 
данные свидетельствует о незначительном отличии вариантов технологических схем по всем принятым для срав-
нения показателям. Технологические схемы будут использованы при составлении проектов отработки выемочных 
столбов слоевыми лавами и войдут в соответствующие нормативные документы ОАО «Беларуськалий».

Ключевые слова: Третий калийный пласт, 4-й сильвинитовый слой, слои 2, 2–3, 3, слоевая выемка, большие 
глубины, технологические схемы, лава, горная выработка, глубокие горизонты, выемочный столб
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DEVELOPMENT OF THE TECHNOLOGICAL SCHEMES FOR LAYERED MINING  
OF THE THIRD POTASH SEAM FOR THE DEEP SECTIONS OF THE FOURTH PRODUCTION  

UNIT MINE FIELD OF JSC “BELARUSKALI”

Abstract. Taking into account the practical experience gained at the Starobinski Deposit, the four variants of tech-
nological schemes for layered extraction of the Third Potash Seam at a depth of over 900 m were developed. The compari-
son of the presented variants of technological schemes was carried out according to the following indicators: the specific 
volume of the mining and preparation work; the average content of potassium chloride and insoluble residue in the ore;  
the volume of ore extraction in the standard; the coefficient of the useful component extraction from the subsoil. It was noted 
that technological schemes with a sequential order of extraction pillars mining, where extraction (panel) workings are car-
ried out separately for the upper and lower longwalls are more effective, and the presence of an inclined section in the upper 
longwall is a significant disadvantage that complicates the operation of the face conveyor and leads to a deterioration in ore 
quality. It is proposed to select a specific variant of layered extraction of the Third Seam with the involvement of the 4th syl-
vinite layer in the development at depths of more than 900 m taking into account the mining-geological and mining-technical 
conditions of a specific section of the mine field, since the data presented in the work indicate an insignificant difference  
in the variants of technological schemes for all accepted indicators for comparison. The process flow charts will be used  
in the development of projects for the development of mining pillars using layered longwalls and will be included in the rele-
vant regulatory documents of JSC “Belaruskali”.
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Введение. Крепление и поддержание в безопасном состоянии подземных горных выработок, 
пройденных на глубоких горизонтах месторождений, является одним из наиболее ответствен-
ных и ресурсоемких технологических процессов горного производства [1]. Неверный выбор 
типа применяемой крепи приводит к риску внезапных обрушений, повышает вероятность раз-
рушения участков выработки и, как следствие, незапланированных простоев в работе рудника.

Деятельность горнодобывающих предприятий неразрывно связана с вовлечением в отработ-
ку все новых участков месторождений [2]. Условия отработки месторождения калийных солей 
постоянно усложняются. Прежде всего это связано с увеличением глубины ведения очистных 
работ и заложения капитальных и вспомогательных выработок [3]. 
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Старобинское месторождение калийных солей, расположенное в южной части Республики 
Беларусь, находится в эксплуатации с 1962 г. [4] с запасами 3,4 млрд т. Около 80 % запасов 
сильвинитовой руды на месторождении сосредоточены в пласте Третьего калийного горизонта 
(в Третьем калийном пласте), который представляет собой моноклиналь, залегающую с паде-
нием под углом 2–3° в северо-восточном направлении на глубинах 450–1200 м. Калийный го-
ризонт состоит из шести сильвинитовых слоев, разделенных слоями каменной соли (галита);  
1-, 5- и 6-й сильвинитовые слои из-за малой мощности отнесены к забалансовым, а для отра- 
ботки 2-, 3- и 4-го сильвинитовых слоев используют слоевую выемку [5] с последовательной вы-
емкой слоев лавами. При слоевой выемке пласта Третьего калийного горизонта Старобинского 
месторождения в нижних лавах, отрабатывающих слои 2, 2–3, 3 после извлечения верхнего  
4-го сильвинитового слоя, наблюдаются интенсивные динамические проявления горного давле-
ния при обрушениях кровли [6]. В настоящее время слоевая выемка – это основная технология 
отработки Третьего калийного пласта на всех рудниках Старобинского месторождения [7]. 

Опыт разработки месторождения свидетельствует, что одним из основных факторов, влия-
ющих на проявления горного давления, является глубина заложения выработок [8]. Более 20 % 
промышленных запасов Третьего калийного пласта на Старобинском месторождении распола-
гается в сложных горно-геологических условиях на глубинах разработки более 900 м. С увели-
чением глубины до 900 м и более в кровле верхнего 4-го сильвинитового слоя промышленного 
пласта существенно (в 2–2,5 раза) возрастает среднее содержание глинистых пород, что снижает 
агрегатную прочность пород кровли и вместе с большой глубиной вызывает интенсивное де-
формирование, а затем преждевременное разрушение выемочных штреков [9; 10], поддерживае- 
мых с применением стандартных мер охраны и крепления. В таких условиях запасы данного 
слоя в настоящее время не извлекаются из-за низкой устойчивости подготовительных выработок 
при их расположении в нем. В таких условиях пласт отрабатывается только по нижним слоям 
2, 2–3 и 3, а верхний сильвинитовый слой после его подработки обрушается и остается в вырабо-
танном пространстве. Потери балансовых запасов при этом составляют до 30 %.

Интенсивная разработка Старобинского месторождения калийных солей диктует необходи-
мость более рационального использования недр, в том числе за счет снижения потерь полезного 
ископаемого, оставляемого в межстолбовых целиках. С этой целью разрабатываются технологи-
ческие схемы слоевой выемки калийных пластов [11–13]. 

В настоящей статье авторами предложены варианты технологических схем с последователь-
ной выемкой слоев пласта Третьего калийного горизонта Старобинского месторождения в слож-
ных горно-геологических условиях на глубине 900 м и более и выполнено их технико-эконо-
мическое сравнение. Выбор конкретных участков исследования осуществлялся с учетом плана 
развития горных работ рудника [14]. 

Основные требования к разработке технологических схем слоевой выемки Третьего ка-
лийного пласта на больших глубинах. При разработке возможных вариантов слоевой выемки 
Третьего калийного пласта на больших глубинах залегания был учтен опыт применения такой 
выемки на угольных и калийных месторождениях в подобных горно-геологических условиях. 
Применительно к Старобинскому месторождению, исходя из практического опыта и результа-
тов ранее выполненных исследований, были выделены принципы, обуславливающие разработку 
новых технологических схем, и сформулирован ряд требований к разрабатываемым технологи-
ческим схемам слоевой выемки Третьего калийного пласта в следующих сложных горно-геоло-
гических условиях.

Во-первых, при наличии в кровле 4-го сильвинитового слоя до 50 % слабых пород подго-
товительные выработки необходимо располагать в пределах более устойчивых нижних слоев 
пласта. 

Во-вторых, сохранность выработок на границе с выработанным пространством зависит  
от времени их нахождения в зоне бокового остаточного опорного давления смежной лавы и в зоне 
временного опорного давления собственной лавы. Поэтому выработки на границе с выработан-
ным пространством смежной лавы проще сохранять в эксплуатационном состоянии при поста-
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дийном их проведении небольшими участками (в пределах выемочного блока), чем при проходке 
сразу на всю длину выемочного столба.

В-третьих, применение технологических схем слоевой выемки Третьего калийного пласта 
при опережающей отработке 4-го сильвинитового слоя верхней лавой с охраной бортовых штреков  
целиками больших размеров (более 50 м) между выемочными столбами является одной из ос-
новных причин динамического проявления горного давления с воздействием на призабойное 
пространство и механизированную крепь нижних лав при периодических обрушениях кровли. 
В случае применения бесцеликовых технологических схем кровле не на чем зависать в выра-
ботанном пространстве у бортовых штреков верхних лав, поэтому вероятность динамических 
обрушений пород высокой интенсивности существенно снижается.

В-четвертых, использование для отработки Третьего калийного пласта технологии селектив-
ной выемки на полную мощность одной лавой с расположением всех подготовительных вырабо-
ток под сравнительно устойчивой 30-сантиметровой пачкой 3-го сильвинитового слоя позволяет 
исключить вероятность динамических обрушений кровли. Однако валовая выемка пласта в этом 
случае исключена из-за существенного разубоживания отбиваемой руды, а для селективной 
лавы будет необходима разработка новой конструкции комбайна, при этом ожидается произво-
дительность лавы значительно ниже достигнутой в слоевых лавах. 

В-пятых, устойчивость подготовительных выработок в технологических схемах слоевой выем-
ки Третьего калийного пласта зависит и от порядка отработки верхнего и нижнего слоев в пре-
делах выемочного столба или панели. При одновременной отработке слоев выработки верхней 
и нижней лав могут оказаться в зоне совместного влияния опорного давления от обеих лав и бы-
стро накопить критические деформации. При последовательной отработке слоев совместное 
влияние на выработки очистных работ верхних и нижних лав исключается. Кроме того, при та-
ком порядке отработки слоевую выемку пласта можно вести с применением бесцеликовых тех-
нологических схем. 

Разработка вариантов слоевой выемки Третьего калийного пласта для больших глубин 
разработки. Для разработки технологических схем слоевой выемки Третьего калийного пласта 
с вовлечением в отработку 4-го сильвинитового слоя необходим выбор участка в пределах шахт-
ного поля на горизонте –670 м, имеющего глубину заложения более 900 м. Наиболее перспек-
тивным для применения разрабатываемых технологических схем является северо-восточный 
участок шахтного поля. На рис. 1 показана часть плана горных работ восточнее 8-й северной 
панели горизонта –670 м, где имеются неотработанные запасы полезного ископаемого, распо-
лагающиеся на глубине от 910 м на юге до 990 м на севере. План выполнен с использованием 
геоинформационной системы MapManager, разработанной в Белорусском государственном уни-
верситете (авторы разработки – М. А. Журавков, В. В. Видякин). 

На глубинах свыше 900 м и слабоустойчивых породах кровли наиболее подходящим спосо-
бом является проведение и поддержание выработок вприсечку к выработанному пространству. 
При этом способы бесцеликовой отработки 4-го сильвинитового слоя Старобинского место-
рождения во многом зависят от горно-геологических условий, в зависимости от этого возможны 
следующие варианты поддержания бортового штрека лавы, проводимого со стороны вырабо-
танного пространства смежной лавы:

− проведение выработки отстающей смежной лавы вприсечку (с целиком 3–5 м) к вырабо-
танному пространству опережающей лавы;

− оставление между выемочными столбами временного целика, частично вынимаемого ком-
байном отстающей смежной лавы одновременно с ведением очистной выемки в самой лаве;

− повторное использования выработки для отработки смежного выемочного столба.
С учетом требований, изложенных в первой части статьи, для отработки Третьего калийного 

пласта в северо-восточной части шахтного поля рудника Четвертого рудоуправления разработа-
ны четыре варианта технологических схем слоевой выемки.

Вариант 1 – бесцеликовая выемка Третьего калийного пласта с последовательным порядком 
отработки выемочных столбов верхней лавой по 4-му сильвинитовому слою и нижней лавой  
по слоям 2, 2−3, 3 в пределах панели (рис. 2).
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В данной технологической схеме вначале от выработок главного направления на всю длину 
выемочного столба проходятся транспортный (1), конвейерный (2) и вентиляционный № 1 (3) 
штреки верхней лавы. Очистные работы по этой схеме начинаются после оконтуривания перво-
го от монтажного штрека короткого выемочного столба длиной 300–400 м. Для этого от транс-
портного штрека проводится вспомогательная выработка (5), а затем вприсечку с целиком 5 м –  
вентиляционный штрек № 2 (4). Вентиляционный штрек № 2 можно использовать только  
для проветривания очистного забоя без установки в нем крепи сопряжения и присутствия лю-
дей. Данное техническое решение использовано и в следующих двух вариантах.

Вентиляционный штрек № 1 (3) для повышения безопасности его перехода нижней лавой 
может закладываться рудой из верхней лавы.

После отработки первых двух выемочных столбов верхней лавой начинается подготовка 
нижней лавы с проходкой на всю длину столба транспортного (8), конвейерного (9), вентиля-
ционных № 1 и № 2 (10 и 11) штреков под выработанным пространством первой верхней лавы. 
Для проходки вентиляционного штрека № 2 (10) на границе с выработанным пространством ис-
пользуются вспомогательные выработки (5'). Отработка выемочного столба нижней лавой может 
вестись короткими столбами с постадийным проведением вентиляционного штрека № 2 (11).

Вариант 2 – с последовательным порядком отработки выемочных столбов верхней и нижней 
лавами в пределах панели и формированием в концевой части верхней лавы наклонного участка 
на нижний 3-й сильвинитовый слой (рис. 3).

Рис. 1. Выкопировка из плана горных выработок ГИС MapManager северо-восточной части шахтного поля рудника 
Четвертого рудоуправления с изолиниями глубины залегания Третьего калийного пласта

Fig. 1. Сopying of northeastern parts of mining of the fields of the mine 4th Mining Department with isolines of depth  
of occurrence of the Third potash formation from the GIS MapManager plan of mountain mining sites
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Подготовка выемочного столба для его отработки верхней лавой заключается в проходке  
от выработок главного направления на всю длину транспортного (1), конвейерного (2), вентиля-
ционных штреков № 1 и № 2 (3 и 4). 

После отработки первых двух выемочных столбов верхней лавой начинается подготовка 
нижней лавы от выработок главного направления с проходкой на всю длину столба транспорт-
ного (8), конвейерного (9) и вентиляционного (10) штреков под выработанным пространством 

Рис. 2. Технологическая схема слоевой бесцеликовой выемки Третьего калийного пласта с последовательной 
отработкой 4-го сильвинитового слоя верхней лавой и слоев 2, 2–3, 3 нижней лавой в пределах панели;  

I, II – разрез; I – I вид I; II – II – вид II; 1, 2, 3, 4 – транспортный, конвейерный, вентиляционный  
№ 1 и вентиляционный № 2 штреки отрабатываемой верхней лавы; 1', 2' – транспортный и конвейерный штреки 

отработанной верхней лавы; 4'' – вентиляционный штрек № 2 последующей верхней лавы; 5, 5' – вспомогательные 
выработки; 6, 6' – изолирующая и вентиляционная перемычки; 7 – забойная крепь; 8, 9, 10, 11 – транспортный, 

конвейерный, вентиляционный № 1 и вентиляционный № 2 штреки отрабатываемой нижней лавы;  
8' – транспортный штрек отработанной нижней лавы; В – величина максимального пролета

Fig. 2. Technological scheme of a layered excavation of the Third potash reservoir with sequential mining of 4th silvinite 
layers by upper lava and layers 2, 2–3, 3 by lower lava within the panel; I, II – section; I – I – view I; II – II – view II;  

1, 2, 3, 4 – transport, conveyor, ventilation no. 1 and ventilation no. 2 galleries of the upper lava being worked out;  
1', 2' – transport and conveyor shafts of the spent upper lava; 4'' – ventilation mining operations no. 2  

of the subsequent upper lava; 5, 5' – auxiliary workings; 6, 6' – insulating and ventilation bridges; 7 – downhole support;  
8, 9, 10, 11 – transport, conveyor, ventilation no. 1 and ventilation no. 2 mining operations of the worked-out lower lava;  

8' – transport mining operations of the spent lower lava; В – maximum span value
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первой верхней лавы. Для проходки вентиляционного штрека (10) на границе с выработанным 
пространством используются вспомогательные выработки. 

Данная технологическая схема предусматривает формирование наклонного участка длиной 
до 30 м, расположенного в концевой части верхней лавы со стороны вентиляционного штрека  
№ 1 (3) для соединения с нижним слоем, в котором пройдены транспортный, конвейерный и вен-
тиляционный № 1 штреки лавы. 

Выемочный столб отрабатывается нижней лавой в обратном порядке к выработкам главного 
направления и при необходимости может вестись также короткими столбами с постадийным 
проведением вентиляционного штрека.

Вариант 3 – со смещением выемочных столбов в слоях, последовательным порядком их от-
работки верхней и нижней лавами в пределах панели с формированием в концевой части верх-
ней лавы наклонного участка на нижний слой (рис. 4).

В данной технологической схеме подготовка выемочного столба для отработки его верх-
ней лавой и привязка подготовительных выработок к пласту аналогичны предыдущей схеме. 
Выемочный столб нижней лавы смещен относительно столба верхней лавы за счет проходки 
дополнительного вентиляционного штрека (11) в ненадработанном массиве вприсечку к выра-
ботанному пространству смежной лавы. Этот штрек служит только для проветривания лавы. 
Остальные подготовительные выработки нижней лавы проходятся под выработанным простран-
ством верхней лавы. 

Рис. 3. Технологическая схема слоевой выемки Третьего калийного пласта с последовательным порядком отработки 
выемочных столбов верхней и нижней лавами в пределах панели и формированием в концевой части верхней лавы 

наклонного участка на нижний; I – разрез; I – I – вид I; 1, 2, 3, 4 – транспортный, конвейерный, вентиляционный  
№ 1 и вентиляционный № 2 штреки отрабатываемой верхней лавы; 5, 5' – вспомогательные выработки;  

6, 6' – изолирующие и вентиляционные перемычки; 7 – забойная крепь; 1', 2' – транспортный и конвейерный штреки 
отработанной смежной лавы; 4'', 10'' – вентиляционные штреки верхней и нижней лав, подлежащих отработке 

(на плане не показаны); 8, 9, 10 – транспортный, конвейерный и вентиляционный штреки нижней лавы  
(на плане не показаны); В – величина максимального пролета

Fig. 3. Technological scheme of the layered excavation of the Third potash reservoir with a sequential order of working  
out the excavation pillars of the upper and lower lavas within the panel and the formation of an inclined section  

at the end of the upper lava on the lower one; I – section; I – I – view I; 1, 2, 3, 4 – transport, conveyor, ventilation no. 1  
and ventilation no. 2 galleries of the upper lava being worked out; 5, 5' – auxiliary workings;  

6, 6' – insulating and ventilation bridges; 7 – mining support; 1', 2' – transport and conveyor shafts of spent adjacent lava;  
4'', 10'' – ventilation galleries of the upper and lower lavas to be worked out (not shown on the plan);  

8, 9, 10 – transport, conveyor and ventilation galleries of the lower lava (not shown on the plan); В – maximum span value
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Вариант 4 – бесцеликовая выемка с отработкой верхнего 4-го сильвинитового слоя через 
длительный (не менее 25 лет) промежуток времени после его подработки нижней лавой по слоям 
2, 2–3 и 3 (рис. 5).

Технологическая схема предусматривает опережающую отработку нижних (2, 2–3, 3) слоев 
с последующей выемкой подработанного 4-го сильвинитового слоя через длительный (не менее 
25 лет) промежуток времени.

Подготовка выемочного столба для его отработки лавой по слоям 2, 2–3, 3 осуществляет-
ся проходкой от выработок главного направления четырех штреков – транспортного (1), кон-
вейерного (2), вентиляционного № 1 (3) и вентиляционного № 2 (4). Вентиляционный штрек  
№ 2 проводится вприсечку к выработанному пространству смежной лавы и предназначен только 
для проветривания очистного забоя.

Подготовительные выработки по 4-му сильвинитовому слою (транспортный (8), конвейер-
ный (9), вентиляционные № 1 и № 2 (10 и 11)) располагаются в подработанном лавой по слоям 
2, 2–3, 3 массиве и проходятся с прихватом 0,4 м нижней части 4-го сильвинитового слоя. 

Отработка выемочных столбов по слоям 2, 2–3, 3 и сильвинитовому слою 4 ведется в обрат-
ном порядке к выработкам главного направления. При необходимости возможно применение ко-
ротких столбов с оконтуриванием их путем постадийного проведения вентиляционных штреков 
№ 1 (4) и № 2 (11). 

В варианте 1 все подготовительные выработки верхней лавы приходятся с прихватом 0,17–
0,20 м нижней части 4-го сильвинитового слоя. В вариантах 2 и 3 с такой привязкой проводят-
ся лишь вспомогательные вентиляционные штреки, предназначенные только для проветрива-

Рис. 4. Технологическая схема слоевой выемки Третьего калийного пласта со смещением выемочных столбов 
в слоях, последовательном порядком их обработки верхней и нижней лавами в пределах панели с формированием 

в концевой части верхней лавы наклонного участка на нижний слой; I – разрез; I – I – вид I;  
1, 2, 3, 4 – транспортный, конвейерный, вентиляционный № 1 и вентиляционный № 2 штреки отрабатываемой 

верхней лавы; 5, 5' – вспомогательные выработки; 6, 6' – изолирующие и вентиляционные перемычки;  
7 – забойная крепь; 1', 2' – транспортный и конвейерный штреки отработанной смежной лавы;  

8, 9, 10, 11 – транспортный, конвейерный и вентиляционный № 1 и вентиляционный № 2 штреки нижней лавы  
(на плане не показаны); В – величина максимального пролета

Fig. 4. Technological scheme of the layered excavation of the Third potash reservoir with the displacement of the excavation 
pillars in the layers, the sequential order of their processing by the upper and lower lavas within the panel with the formation 

of an inclined section on the lower layer at the end of the upper lava; I – section; I – I – view I; 1, 2, 3, 4 – transport,  
conveyor, ventilation no. 1 and ventilation no. 2 adits of the upper longwall being mined; 5, 5' – auxiliary workings;  

6, 6' – insulating and ventilation bridges; 7 – mining support; 1', 2' – transport and conveyor shafts of spent adjacent lava;  
8, 9, 10, 11 – transport, conveyor and ventilation no. 1 and ventilation no. 2 adits of lower lava flows  

(not shown on the plan); В – maximum span value
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ния очистных забоев. В варианте 4 проходка подготовительных выработок для выемки 4-го 
сильвинитового слоя после его подработки лавой по слоям 2, 2–3, 3 осуществляется с прихватом 
0,4 м нижней части 4-го сильвинитового слоя. Остальные выработки как по 4-му сильвинитово-
му слою, так и по слоям 2, 2–3, 3 проводятся в нижней более устойчивой части пласта с оставле-
нием в кровле 0,3 м 3-го сильвинитового слоя.

Рис. 5. Технологическая схема слоевой бесцеликовой выемки Третьего калийного пласта с отработкой  
4-го сильвинитового слоя через длительный (не менее 25 лет) промежуток времени после его подработки лавой  

по слоям 2, 2–3 и 3; I, II – разрез; I – I вид I; II – II – вид II; 1, 2, 3, 4 – транспортный, конвейерный, вентиляционный 
№ 1 и вентиляционный № 2 штреки отрабатываемой лавы по слоям 2, 2–3, 3; 1', 2' – транспортный и конвейерный 

штреки отработанной лавы по слом 2, 2–3, 3; 4'' – вентиляционный штрек № 2 последующей лавы по слоям 2, 2–3, 3; 
5, 5' – вспомогательные выработки; 6, 6' – изолирующая и вентиляционные перемычки; 7 – забойная крепь;  

8, 9, 10, 11 – транспортный, конвейерный, вентиляционный № 1 и вентиляционный № 2 штреки отрабатываемой 
лавы по 4-му сильвинитовому слою; 8' – транспортный штрек отработанной лавы по 4-му сильвинитовому слою; 

В – величина максимального пролета
Fig. 5. Technological scheme of layered excavation of the Third potash reservoir with the processing of the 4th silvinite layer 

after a long (at least 25 years) period of time after its underworking by lava in layers 2, 2–3 and 3; I, II – section;  
I – I view I; II – II – view II; 1, 2, 3, 4 – transport, conveyor, ventilation no. 1 and ventilation no. 2 galleries  

of lava flows by layers 2, 2–3, 3; 1', 2' – transport and conveyor galleries of spent lava for scrapping  
2, 2–3, 3; 4'' – ventilation galleries no. 2 of the subsequent lava by layers 2, 2–3, 3; 5, 5' – auxiliary workings;  

6, 6' – insulating and ventilation bridges; 7 – downhole support; 8, 9, 10, 11 – transport, conveyor, ventilation no. 1  
and ventilation no. 2 lava galleries of along the 4th silvinite layer; 8' – transport drift of spent lava along  

the 4th silvinite layer; В – maximum span value
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Во всех вариантах принят последовательный порядок отработки слоев в пределах выемоч-
ного столба или участка шахтного поля, что позволяет исключить в технологических схемах 
оставление широких внутрипанельных и межстолбовых целиков и перейти на бесцеликовую 
отработку обоих слоев, при которой существенно сокращаются потери полезного ископаемого 
и снижается вероятность динамических проявлений горного давления в очистных забоях.

В разработанных вариантах технологических схем слоевой выемки охрана подготовитель-
ных выработок шириной 3 м осуществляется четырьмя компенсационными щелями (в кровле, 
почве и боках), а выработок шириной 3,8–4,0 м – тремя щелями без проведения компенсацион-
ной щели в кровле. В варианте 1 конвейерному штреку верхней лавы шириной 3,8 м придается 
плоская форма кровли и в ней оформляется компенсационная полость.

Кровля подготовительных выработок крепится анкерами первого уровня, и лишь в варианте 1  
применяется дополнительное крепление подготовительных выработок верхней лавы анкерами 
второго уровня повышенной несущей способности. 

Технико-экономическое сравнение разработанных вариантов технологических схем. 
Сравнение представленных вариантов технологических схем осуществляется по следующим по-
казателям: удельный объем горно-подготовительных работ (ГПР); среднее содержание хлорида 
калия (KCl) и нерастворимого остатка (Н.О.) в руде; объем добычи руды в стандарте; коэффици-
ент извлечения полезного компонента из недр.

Коэффициент извлечения полезного ископаемого (Kи) определялся из выражения (1)

	

ст
доб

и ст
бал

100,  %,QK
Q

= ⋅  
	

(1)

где ст
добQ   – объем добываемой руды в стандарте из выемочного столба для рассматриваемого ва-

рианта; ст
балQ   – объем балансовых запасов для выемочного столба в рассматриваемом варианте.

Технико-экономические показатели для каждого из вариантов технологических схем пред-
ставлены в таблице.

Технико-экономические показатели вариантов технологических схем
Technical and economic indicators of technological scheme options

Вариант
Variant

Показатели 
Indicators

Удельный объем  
ГПР, %

Specific volume  
of MPW, %

Качество руды
Ore quality

Объем добычи руды  
в стандарте, тыс. т

The volume of ore extraction 
in the standard, thousand tons

Извлечение KСl  
из недр, %

Extraction of KCl from  
the depths, %

Содержание KСl, %
KCl content, %

Содержание Н.О., %
Insoluble residue content, %

Вариант 1
Variant 1 8,8 36,8 9,1 7062,6 91,8

Вариант 2
Variant 2 6,9 36,2 9,1 6523,3 84,8

Вариант 3
Variant 3 6,8 36,3 8,7 7490,6 83,5

Вариант 4
Variant 4 8,2 36,6 6,4 7088,6 92,1

Из таблицы видно, что удельный объем горно-подготовительных работ для предлагаемых 
технологических схем изменяется от 6,8 % (вариант 3) до 8,8 % (вариант 1), что не позволяет 
выделить лучший из предлагаемых вариантов технологических схем. Наиболее высокое содер-
жание KCl в руде (36,8 %) характерно для варианта 1, а наименьшее (36,2 %) – для варианта 2.  
По содержанию полезного компонента рассматриваемые варианты практически равнозначны. 

Содержание Н.О. в руде для вариантов 1–3 примерно одинаково и изменяется от 8,7 до 9,1 %. 
Для варианта 4 значение Н.О. минимально и составляет 6,4 %. Из опыта обогащения калий-
ных руд известно, что увеличение содержания в них Н.О. на 1 % влечет за собой помимо роста  
потребления дорогостоящих реагентов снижение извлечения полезного компонента на 2–3 %, 
что необходимо обязательно учитывать.
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Объем добычи руды в стандарте из выемочного столба для предложенных технологических 
схем максимален для варианта 3 (7 490,6 тыс. т), на втором и третьем месте соответственно вари-
анты 4 и 1 (7 088,6 и 7 062,6 тыс. т). Минимальный объем добычи – у варианта 2 (6 523,3 тыс. т). 
При этом максимальный процент извлечения полезного компонента при добыче из выемочных  
столбов предложенных технологических схем характерен для варианта 4 (92,1 %) и вариан- 
та 1 (91,8 %); минимальное извлечение (83,5 %) – для варианта 3.

Таким образом, основным преимуществом вариантов 1 и 4 является высокое извлечение полез-
ного компонента из недр по сравнению с вариантами 2 и 3. В то же время в варианте 1 при отработ-
ке 4-го сильвинитового слоя потребуется дополнительное крепление анкерами высокой несущей 
способности не только сопряжений и камер разворота самоходного транспорта, но и линейных 
участков конвейерного штрека, а в варианте 4 сильвинитовый слой 4 можно будет отрабатывать 
не ранее 25–30 лет после его подработки лавой по слоям 2, 2–3, 3.

Существенным недостатком вариантов 2 и 3 является наличие в верхней лаве наклонного 
участка, усложняющего работу забойного конвейера и снижающего качество руды. Но данный 
отрицательный элемент технологии перекрывается положительным фактором – возможностью 
расположения основных подготовительных выработок лавы по 4-му сильвинитовому слою 
в нижней части пласта, обеспечивая значительное повышение их устойчивости.

Как было отмечено ранее [2], более эффективными являются технологические схемы с по-
следовательным порядком отработки выемочных столбов. В них выемочные штреки проводят 
отдельно для верхней и нижней лав, что позволяет использовать бесцеликовую отработку смежных 
выемочных столбов в каждом слое или с оставлением между ними целиков минимальных размеров. 

Несмотря на отсутствие опыта отработки Третьего калийного пласта на полную мощность 
одной лавой с повторным использованием выемочных штреков или с проведением штреков 
вприсечку к выработанному пространству [1], данное направление также остается перспектив-
ным при отработке Старобинского калийного месторождения.

Заключение. В данной работе предложено четыре варианта технологических схем слоевой 
выемки Третьего калийного пласта с вовлечением в отработку 4-го сильвинитового слоя в севе-
ро-восточной части шахтного поля рудника Четвертого рудоуправления Старобинского место-
рождения с глубиной свыше 900 м.

Анализ представленных данных свидетельствует о незначительных отличиях вариантов тех-
нологических схем по всем принятым для сравнения показателям, поэтому отдать явное предпо-
чтение какому-либо из них не представляется возможным. В связи с этим выбор варианта слое- 
вой выемки Третьего калийного пласта с вовлечением с отработку 4-го сильвинитового слоя  
на глубинах более 900 м будет осуществляться с учетом привязки к горно-геологическим и гор-
нотехническим условиям конкретного участка шахтного поля.

Разработанные технологические схемы с рекомендуемыми способами поддержания подго-
товительных выработок будут использованы при составлении проектов отработки выемочных 
столбов слоевыми лавами и войдут в соответствующие нормативные документы при их очеред-
ном пересмотре.

Список использованных источников

1. Технологии крепления горных выработок глубоких горизонтов Октябрьского месторождения / С. А. Вохмин, 
Г. С. Курчин, Е. С. Майоров [и др.] // Известия вузов. Горный журнал. – 2019. – № 7. – С. 45–52. https://doi.
org/10.21440/0536-1028-2019-7-45-52

2. Морозов, И. А. Оценка устойчивости горных выработок в соляных породах Гремячинского месторождения: 
дис. … канд. техн. наук: 2.8.6 / Морозов Иван Александрович; Гор. ин-т Урал. отд-ния Рос. акад. наук, фил. Федер. 
гос. бюджет. учр. науки Перм. федер. исслед. центра Урал. отд-ния Рос. акад. наук. – Пермь, 2022. – 153 л.

3. Прушак, В. Я. Закономерности взаимного влияния горных выработок на глубоких горизонтах Старобинского 
месторождения калийных солей / В. Я. Прушак // Весці Нацыянальнай акадэміі навук Беларусi. Серыя фiзіка-тэхніч-
ных навук. – 2015. – № 4. – С. 41–45. 

4. Двухшнековый селективный комбайн для отработки сложноструктурных калийных пластов Старобинского 
месторождения длинными очистными забоями / В. Я. Щерба, В. Я. Прушак, Б. И. Петровский [и др.] // Вестник 
Полоцкого государственного университета. Серия В. – 2005. – № 6. – С. 202–206. 



Весці Нацыянальнай акадэміі навук Беларусі. Серыя фізіка-тэхнічных навук. 2025. Т. 70, № 4. С. 307–319  
Proceedings of the National Academy of Sciences of Belarus. Physical-technical series, 2025, vol. 70, no. 4, рр. 307–319318

5. Технология слоевой выемки при разработке пласта Третьего калийного горизонта Старобинского место-
рождения / И. А. Подлесный, В. Н. Гетманов, Б. И. Петровский, И. Е. Носуля // Горный журнал. – 2018. – № 8. – С. 59–63. 
https://doi.org/10.17580/gzh.2018.08.08

6. Петровский, Б. И. Прогноз опасных обрушений кровли при слоевой отработке пласта Третьего калийного 
горизонта / Б. И. Петровский, А. А. Гарнишевский, О. М. Чечуха // Горный журнал. – 2018. – № 8. – С. 76–81. https://
doi.org/10.17580/gzh.2018.08.11

7. Прушак, В. Я. Особенности проявления горного давления в лавах с труднообрушаемой кровлей при бесце-
ликовой выемке Третьего калийного пласта Старобинского месторождения / В. Я. Прушак // Весці Нацыянальнай 
акадэміі навук Беларусi. Серыя фiзіка-тэхнічных навук. – 2016. – № 1. – С. 99–105.

8. Прушак, В. Я. Деформация контура горных выработок Старобинского месторождения калийных солей при раз-
личных глубинах заложения / В. Я. Прушак // Доклады Национальной академии наук Беларуси. – 2016. – Т. 60, № 2. – 
С. 97–101.

9. Тараканов, В. А. Поддержание горных выработок при разработке Старобинского месторождения на больших 
глубинах / В. А. Тараканов, И. И. Головатый, А. Л. Поляков // Горный журнал. – 2010. – № 8. – С. 36–38.

10. Патиюк, С. И. Поддержание капитальных и подготовительных выработок на глубоких горизонтах при от-
работке Старобинского месторождения / С. И. Патиюк, Ю. Б. Петровский, В. Я. Прушак // Горный журнал. – 2018. –  
№ 8. – С. 70–75. https://doi.org/10.17580/gzh.2018.08.10

11. Сокол, Д. Г. Направления совершенствования бесцеликовых технологических схем отработки калийных пла-
стов / Д. Г. Сокол // Вестник Кузбасского государственного технического университета. – 2018. – № 4. – С. 93–98. 
https://doi.org/10.26730/1999-4125-2018-4-93-98

12. Зубов, В. П. Совершенствования систем разработки Третьего калийного пласта на рудниках ПО «Беларуськалий» /  
В. П. Зубов, А. Д. Смычник, В. М. Кириенко // Записки Горного института. – 2006. – Т. 168, вып. 3. – С. 15–18. 

13. Петровский, А. Б. Особенности проявлений горного давления при слоевой бесцеликовой выемке Третьего ка-
лийного пласта на Старобинском месторождении калийных солей / А. Б. Петровский, В. Я. Прушак, Е. А. Лутович //  
Доклады Национальной академии наук Беларуси. – 2020. – Т. 64, № 3. – С. 350–360. https://doi.org/10.29235/1561-8323-
2020-64-3-350-360

14. Петровский, А. Б. Физико-механические свойства пород, слагающих и перекрывающих Третий калийный 
пласт Старобинского месторождения / А. Б. Петровский, В. Я. Прушак, Е. А. Лутович // Доклады Национальной ака-
демии наук Беларуси. – 2021. – Т. 65, № 4. – С. 484–495. https://doi.org/10.29235/1561-8323-2021-65-4-484-494

References

1. Vokhmin S. A., Kurchin G. S., Maiorov E. S., Kirsanov A. K., Kostylev S. S. An overview of deep horizons excavation 
lining technologies at Oktyabrsky deposit. Izvestiya vysshikh uchebnykh zavedenii. Gornyi zhurnal = News of the Higher 
Institutions. Mining Journal, 2019, no. 7, pp. 45–52 (in Russian). https://doi.org/10.21440/0536-1028-2019-7-45-52

2. Morozov I. A. Evaluation of the Stability of Mine Workings in Salt Rocks of the Gremyachinskoye Deposit [dissertation].  
Permian, Mining Institute of the Ural Branch of the Russian Academy of Sciences, branch of the Federal State Budgetary 
Scientific Institution Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences, 2022. 153 p. 
(in Russian).

3. Prushak V. Ya. Patterns of mutual influence of mine workings at deep horizons of the Starobin potash salt deposit. 
Vestsi Natsyyanal’nai akademii navuk Belarusi. Seryya fizika-tekhnichnykh navuk = Proceedings of the National Academy  
of Sciences of Belarus. Physical-technical series, 2015, no. 4, pp. 41–45 (in Russian).

4. Shcherba V. Ya., Prushak V. Ya., Petrovskiy B. I., Kalinichenko P. I., Kirienko V. M., Pleskunov V. N. Twin-screw 
selective combine for mining complex-structured potash seams of the Starobinskoye deposit using longwall faces. Vestnik 
Polotskogo gosudarstvennogo universiteta. Seriya B. Promyshlennost’. Prikladnye nauki [Bulletin of Polotsk State University. 
Series B], 2005, no. 6, pp. 202–206 (in Russian).

5. Podlesnyi I. A., Getmanov V. N., Petrovskiy B. I., Nosulya I. E. Multi-slice mining technology for potash seam III 
at the Starobinsk deposit. Gornyi zhurnal [Mining Journal], 2018, no. 8, pp. 59–63 (in Russian). https://doi.org/10.17580/
gzh.2018.08.08

6. Petrovskiy B. I., Garnishevskiy A. A., Chechuha O. M. Prediction of hazardous roof falls in slice mining of potash 
seam III. Gornyi zhurnal [Mining Journal], 2018, no. 8, pp. 76–81 (in Russian). https://doi.org/10.17580/gzh.2018.08.11

7. Prushak V. Ya. Peculiarities of manifestation of rock pressure in longwalls with difficult-to-collapse roof during non-
core mining of the Third potash seam of the Starobin deposit. Vestsi Natsyyanal’nai akademii navuk Belarusi. Seryya fizika-
tekhnichnykh navuk = Proceedings of the National Academy of Sciences of Belarus. Physical-technical series, 2016, no. 1,  
pp. 99–105 (in Russian).

8. Prushak V. Ya. Deformation of the edge of the workings of the Starobin deposit of potash salts at different location 
depths. Doklady Natsional’noi akademii nauk Belarusi = Doklady of the National Academy of Sciences of Belarus, 2016,  
vol. 60, no. 2, pp. 97–101 (in Russian).

9. Tarakanov V. A., Golovatyj I. I., Polyakov A. L. Maintenance of mine workings during the development of the Staro- 
binskoye deposit at great depths. Gornyi zhurnal [Mining Journal], 2010, no. 8, pp. 36–38 (in Russian).

10. Patiyuk S. I., Petrovskij Yu. B., Prushak V. Ya. Maintenance of capital and development workings at deep levels 
during the development of the Starobinskoye deposit. Gornyi zhurnal [Mining Journal], 2018, no. 8, pp. 70–75 (in Russian). 
https://doi.org/10.17580/gzh.2018.08.10



Весці Нацыянальнай акадэміі навук Беларусі. Серыя фізіка-тэхнічных навук. 2025. Т. 70, № 4. С. 307–319 
Proceedings of the National Academy of Sciences of Belarus. Physical-technical series, 2025, vol. 70, no. 4, рр. 307–319 319

11. Sokol D. G. Principal directions of the development of mining methods potash seams. Vestnik Kuzbasskogo gosudarst- 
vennogo tekhnicheskogo universiteta = Vestnik of Kuzbass State Technical University, 2018, no. 4, pp. 93–98 (in Russian). 
https://doi.org/10.26730/1999-4125-2018-4-93-98

12. Zubov V. P., Smychnik A. D., Kirienko V. M. Improving the development systems of the Third Potash Seam at the mines 
of Belaruskali. Zapiski Gornogo instituta = Journal of Mining Institute, 2006, vol. 168, iss. 3, pp. 15–18 (in Russian).

13. Petrovsky A. B., Prushak V. Ya., Lutovich E. A. Features of rock pressure manifestations whith the slice pillarless 
extraction of the Third potash layer at the Starobin potash salt deposit. Doklady Natsional’noi akademii nauk Belarusi =  
Doklady of the National Academy of Sciences of Belarus, 2020, vol. 64, no. 3, pp. 350–360 (in Russian). https://doi.
org/10.29235/1561-8323-2020-64-3-350-360

14. Petrovskiy A. B, Prushak V. Ya., Lutovich E. A. Physical and mechanical properties of the rocks of the Starobinsky 
deposit forming the Third potash layer and its roof. Doklady Natsional’noi akademii nauk Belarusi = Doklady of the National 
Academy of Sciences of Belarus, 2021, vol. 65, no. 4, pp. 484–494 (in Russian). https://doi.org/10.29235/1561-8323-2021-65-
4-484-494



Весці Нацыянальнай акадэміі навук Беларусі. Серыя фізіка-тэхнічных навук. 2025. Т. 70, № 4. С. 320–335  
Proceedings of the National Academy of Sciences of Belarus. Physical-technical series, 2025, vol. 70, no. 4, рр. 320–335320

ISSN 1561-8358 (Print)
ISSN 2524-244X (Online)

ЭНЕРГЕТИКА, ТЕПЛО- И МАССООБМЕН
POWER ENGINEERING, HEAT AND MASS TRANSFER

https://doi.org/10.29235/1561-8358-2025-70-4-320-335
УДК 536.24

Обзор

А. А. Гаспорович*, М. А. Кузьмич

Институт тепло- и массообмена имени А. В. Лыкова Национальной академии наук Беларуси,  
ул. П. Бровки, 15, 220072, Минск, Республика Беларусь

АНАЛИЗ ТЕХНОЛОГИЙ ПРОЕКТИРОВАНИЯ  
И СОЗДАНИЯ ДВУХФАЗНЫХ ТЕРМОСИФОНОВ ДЛЯ СИСТЕМ ОХЛАЖДЕНИЯ12

Аннотация. Выполнен краткий анализ актуальных разработок, исследований и применения двухфазных тер-
мосифонов в технике. Наиболее актуальным в данный момент является поиск перспективы применения термоси-
фонов для охлаждения электроники (силовой и микроэлектроники). При этом рассмотрены и другие возможности 
использования данного теплообменного элемента: стабилизация температуры почвы, консервация вечной мерзло-
ты, охлаждение теплонагруженного оборудования, в составе систем кондиционирования теплообменников, а так-
же в атомной промышленности. Особое внимание уделено выбору рабочей жидкости и поиску оптимального ко-
эффициента наполнения устройства, способам интенсификации теплообмена и влиянию конструкции термосифона  
на его производительность. 
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ANALYSIS OF TWO-PHASE THERMOSYPHON DESIGN AND CREATION TECHNOLOGIES  
FOR COOLING SYSTEM APPLICATIONS

Abstract. A brief analysis of current developments, research, and applications of two-phase thermosyphons in engi-
neering is provided. The most relevant application of thermosyphons today is electronic cooling. (power and microelectron-
ics). Other possibilities for using this heat exchange element were also considered: soil temperature stabilization, permafrost 
preservation, cooling of heat-loaded equipment, heat exchanger for air conditioning systems, nuclear industry. Working fluid 
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selection, optimal filling factor of the device, heat transfer intensifying methods, and the thermosyphon design influence  
on its performance were examined in detail. 
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Введение. Применение двухфазных термосифонов и тепловых труб в современных системах 
охлаждения позволяет обеспечить быстрый и эффективный отвод тепла и передачу его в зону  
теплосъема. Двухфазные термосифоны широко используются для систем охлаждения теплонагру-
женных объектов благодаря способности передавать высокие тепловые потоки на протяженные 
дистанции без механической прокачки, большому сроку службы, низкой стоимости. Различные 
типы термосифонов широко используются в промышленности, например, для охлаждения электрон-
ных устройств [1–4], солнечных энергетических систем [5; 6] и систем рекуперации тепла [7; 8].

Одним из предпочтительных решений при разработке систем охлаждения электронных ком-
понентов является использование двухфазных контурных термосифонов [9; 10]. В них реализу-
ется принцип пространственного разделения потоков пара и возвращающейся в зону нагрева 
жидкости, что позволяет значительно уменьшить термическое сопротивление таких устройств. 
Термосифоны этого типа применяются в системах охлаждения наравне с контурными и пульса-
ционными тепловыми трубами, классическими термосифонами и паровыми камерами. 

Двухфазные контурные термосифоны успешно используются для охлаждения элементов си-
ловой электроники. Данные по их работоспособности при различной геометрии и расположе-
нии в пространстве представляют практический и научный интерес для разработчиков новых 
устройств такого типа [11].

В [12] показано, что в стационарном режиме работы эффективность термосифона опреде-
ляется мощностью источника тепла, площадью конденсатора, температурным напором между 
рабочим веществом термосифона и охлаждающей жидкостью, теплофизическими свойствами 
охлаждающей жидкости. Предложенная автором математическая модель позволяет прогнозиро-
вать реакцию термосифона, работающего в стационарном режиме, на кратковременное увеличе-
ние мощности источника тепла. Правильно спроектированный термосифон должен учитывать 
соотношение площадей поверхности конденсатора и испарителя, а выбор рабочей жидкости про-
изведен с учетом скрытой теплоты парообразования, теплоемкости, теплопроводности, кинема-
тической вязкости и т. д. Согласно проведенным численным расчетам устройство устойчиво ра-
ботает в стационарном режиме и менее чем за 2 с возвращается в исходное состояние даже после 
больших возмущений. Кратковременное повышение тепловой нагрузки на испаритель на 10 % 
приводит к таким же кратковременным увеличению толщины пленки жидкой фазы на стенке 
конденсатора за счет возросшего массового расхода рабочей жидкости от испарителя к конден-
сатору и росту температуры пленки. После возвращения источника нагрева в стационарный ре-
жим толщина пленки менее чем за 2 с уменьшается за счет гравитационного гидродинамическо-
го стекания, при этом снижается и ее температура. Это важное качество термосифона, благодаря 
которому обеспечиваются надежные тепловые условия работы охлаждаемых объектов, чувстви-
тельных к перегревам.
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Термосифоны применяются для охлаждения устройств с очень широким диапазоном сбра-
сываемых мощностей. Например, в [13] предложен контурный термосифон, спроектированный 
в контексте теплового управления большим преобразователем мощности среднего напряжения 
общей мощностью 5 МВт, что соответствует тепловой нагрузке 2,4 кВт на единицу площади  
охлаждаемой поверхности.

Двухфазные термосифоны для охлаждения электроники. В настоящее время востребо-
ванным является охлаждение миниатюрных электронных устройств, а также повышение их инте-
грации и мощности. Такие устройства могут выделять значительный объем тепловой энергии 
при высоких плотностях теплового потока [14; 15]. Способ эффективного рассеивания тепла 
в ограниченном пространстве имеет решающее значение для развития электронных устройств [16].

Растущий спрос на миниатюрные электронные устройства с высокой плотностью сбрасываемых 
тепловых потоков привел к необходимости создания более эффективных систем охлаждения, 
способных отводить такие потоки от зоны нагрева. В то время как традиционные методы одно-
фазного охлаждения достигли своих пределов и не достаточны для удовлетворения растущих 
потребностей в охлаждении электронных устройств, современные двухфазные системы с про-
цессом фазового перехода используют скрытое тепло во время испарения. Это позволяет эффектив-
но рассеивать значительное количество тепла, сохраняя при этом относительно низкую темпе-
ратуру поверхности устройства. Тепловые трубы и термосифоны, использующие процесс фазового 
перехода, широко применяются в электронных устройствах в качестве распределителей тепла 
и представляют собой наиболее исследованные устройства для охлаждения электронных изделий. 

По мере уменьшения размеров этих устройств растут и запросы на более компактные и эф-
фективные теплоотводящие устройства. Длительное воздействие высоких температур на элек-
тронные устройства может привести к снижению производительности и возможному выходу  
их из строя, поэтому требуется поддерживать не только заданную температуру, но и изотермич-
ность зоны нагрева, не допуская локальных перегревов. Например, современные процессоры 
имеют возможность сохранять работоспособность при температурах до 100–110 °С, но для про- 
дления их срока службы и меньшего износа рекомендуется поддерживать рабочую температуру 
в пределах 85–90 °С. Поскольку размеры электронных устройств с каждым годом уменьшаются  
и их мощность возрастает, эффективное рассеивание выделяемого ими тепла становится все бо- 
лее сложной задачей [17], что увеличивает потребность в инновационных решениях для охлаж-
дения электронных устройств. Современные электронные платы содержат множество высоко-
производительных компонентов, таких как центральные процессоры (ЦП), графические про-
цессоры (ГП) и модули памяти, которые во время работы выделяют значительное количество 
тепла. Эффективное рассеивание тепла имеет решающее значение не только для поддержания 
оптимальной работы этих компонентов, но также для предотвращения сбоев, связанных с пере-
гревом, и продления срока службы электронных устройств [18].

Базовый принцип работы подобных устройств прост: тепловые трубки или термосифоны, 
которые зачастую используются в связках по несколько штук, забирают тепло от охлаждающей 
пластины, имеющей контактную площадку с тепловыделяющим устройством (ЦП/ГП), и пере-
носят его к ребрам радиатора. Тепловыделение современных процессоров составляет 100–250 Вт, 
графических процессоров (видеокарты) – до 450 Вт, при этом контактная площадка довольно 
мала (для процессоров – 15–25 см2) и плотности потоков достигают десятков ватт на квадратный 
сантиметр. Рассеивание тепла происходит, как правило, с использованием воздушного охлажде-
ния (вентилятора). Термосифоны могут отводить тепловую энергию на сравнительно большое 
расстояние, но не применимы, например, в мобильных электронных устройствах типа смартфо-
нов, где используются тепловые трубки или паровые камеры. Термосифоны позволяют прояв-
лять большую гибкость при проектировании конструкции испарителя и формы конденсатора. 

За последние несколько десятилетий было проведено множество исследований тепловых ха- 
рактеристик термосифонов. Так, экспериментально изучены особенности фазового перехода  
при теплопередаче и работоспособность двухфазного термосифона с различными рабочими  
телами и рифленой поверхностью испарения [19]. Было обнаружено, что вода как рабочая жид-
кость превосходит этанол с точки зрения эффективности рассеивания тепла, а рифленая поверх-
ность испарителя улучшает общую скорость теплопередачи. В более поздней работе [20] иссле-
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дователи представили осесимметричную двумерную модель тепломассообмена для плоского 
двухфазного термосифона в форме диска. 

Влияние рабочей жидкости и степени заполнения на работу термосифонов. Существует 
множество факторов, влияющих на эффективность теплопередачи термосифона, в частности 
коэффициент наполнения, тепловая нагрузка, перепад высот между конденсатором и испарите-
лем, тип рабочей жидкости и конструкция испарителя и конденсатора. Коэффициент наполне-
ния является одним из наиболее важных факторов, влияющих на эффективность теплопередачи. 
Слишком высокий или слишком низкий коэффициент наполнения ухудшает эффективность те-
плопередачи. В целом значение или диапазон коэффициентов наполнения, при которых дости-
гается наилучшая эффективность теплопередачи, определяется как оптимальный коэффициент 
наполнения [21; 22].

Выбор рабочей жидкости играет значительную роль в работе термосифонов, так как напря-
мую влияет на характеристики теплопередачи и эффективность системы. Различные рабочие 
жидкости имеют разные теплофизические свойства, такие как плотность, удельная теплоем-
кость, вязкость и поверхностное натяжение, что обусловливает тепловое поведение системы. 
Некоторые жидкости могут иметь высокий коэффициент теплопередачи, но при этом не подхо-
дить по температуре кипения или вязкости, которые могут повлиять на запуск и циркуляцию 
в термосифоне. Следовательно, выбор рабочей жидкости имеет важное значение для достижения 
оптимальных тепловых характеристик и соответствия желаемым условиям применения. 

Влияние рабочей жидкости на характеристики термосифона было экспериментально и чис-
ленно изучено во многих исследованиях с целью определения наиболее подходящей жидкости 
для конкретного случая. Так, в [17] описана сложная динамика теплопередачи и фазовых изме-
нений внутри термосифона плоской формы; изучается влияние различных рабочих жидкостей, 
коэффициентов наполнения и характеристик подводимых тепловых потоков на тепловые харак-
теристики системы; проведено моделирование явлений фазового перехода в осесимметричной 
модели термосифонов дискообразной формы. В данной работе предлагается использовать в тер-
мосифонах плоской формы самосмачивающиеся наножидкости, которые улучшают тепловые 
характеристики и предотвращают пересыхание за счет снижения температуры горячей точки 
(на 16 °С ниже по сравнению с водой). Результаты исследования показали, что самосмачиваю-
щиеся наножидкости имеют улучшенные возможности теплопередачи и сниженный риск вы-
сыхания в сравнении с традиционными рабочими жидкостями. Примечательно, что самосмачи-
вающиеся жидкости и самосмачивающиеся наножидкости изменяют поверхностное натяжение 
при повышении температуры, что эффективно предотвращает высыхание, притягивая жидкость 
к горячим областям. Кроме того, повышенная теплопроводность наножидкостей во время кипе-
ния дополнительно повышает их эффективность.

Авторы [23] исследовали рабочие характеристики двухфазного кольцевого термосифона в со-
суде высокого давления для моделирования рабочего состояния термосифона в системе охлаж-
дения с пассивной защитной оболочкой (рис. 1). В качестве рабочей жидкости использовалась 
вода (коэффициент заполнения 40–65 %), конденсатор был помещен в кипящий водяной бак  
при температуре 100 °C, а испаритель – в сосуд высокого давления, экспериментальный диапазон  
давления в котором составлял 0,32–0,46 МПа. При давлении в сосуде ниже 0,36 МПа наимень-
шее термическое сопротивление достигалось при более низких коэффициентах заполнения.  
По мере увеличения давления в сосуде более высокие коэффициенты заполнения приводят 
к лучшей теплопередаче. Однако чем выше коэффициент заполнения, тем выше давление, необхо-
димое для циркуляции, и тем больше потеря давления по пути циркуляции. Поэтому при даль-
нейшем увеличении давления теплопередача перестает улучшаться, а при еще большем увели-
чении давления даже ухудшается. Показано, что по мере возрастания давления в сосуде и коэф-
фициента заполнения увеличивается секция переохлаждения и уменьшается секция перегрева 
в испарителе. Поведение теплопередачи в трубке основано на конвективной теплопередаче и те-
плопередаче пузырькового кипения при низком тепловом потоке.

В [24] представлена гидродинамическая модель для изучения изменения температуры в закры-
тых кольцевых термосифонах с различными уровнями заправки рабочей жидкости – от 40 до 80 %  
от объема термосифона. Авторами рассчитан перепад давления, приведенная скорость, коэффи- 
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циент теплопередачи и теплопередача при различных условиях наполнения. Установлено,  
что коэффициент заполнения рабочей жидкостью напрямую влияет и на давление в системе, по-
скольку чем меньше жидкости в контуре, тем быстрее она испаряется и происходит возрастание 
давления. При этом высокая степень заполнения термосифона негативно влияет на его коэффи-
циент теплоотдачи, а также на скорость пара и жидкости. 

Сравнительно низкие характеристики теплопередачи традиционных жидкостей, используе-
мых для регулирования или контроля рабочей температуры в обычных радиаторах, двигателях  
и других промышленных устройствах, обусловили необходимость поиска новых смесей или рас-
творов жидкостей с улучшенными теплофизическими свойствами. Среди этих новых изучаемых 
классов есть наножидкости – смесь традиционных жидкостей, к которым добавлены наноча-
стицы различных типов и концентраций. Возможность контролировать или проектировать раз-
личные теплофизические свойства таких жидкостей как по отдельности, так и в совокупности, 
может дать возможность значительно повысить общую производительность системы. Особый 
интерес представляет возможность добавления в жидкости наночастиц материалов с высокой 
теплопроводностью для улучшения общей теплопроводности теплоносителей. Этими наноча-
стицами могут быть металлы, оксиды металлов, углеродные нанотрубки или графен, а базовы-
ми жидкостями часто являются вода, этиленгликоль (ЭГ), полиальфаолефин (ПАО) или другие 
жидкости. 

В [25] кратко рассматриваются различные способы применения наножидкостей. Основное 
внимание уделяется различным параметрам, которые, существенно влияют на термическое по-
ведение в целом и на теплопроводность этих наножидкостей в частности, включая такие пара-
метры, как размер и форма частиц, pH жидкости, поверхностно-активное вещество, тип раство-
рителя, водородные связи, температура, базовые жидкости и выравнивание используемых нано-
частиц (углеродные нанотрубки, графен и наночастицы оксидов металлов). Было обнаружено, 
что указанные параметры оказывают влияние на теплопроводность наножидкостей и могут как 
увеличивать ее, так и уменьшать.

Рис. 1. Схема экспериментальной установки [23]
Fig. 1. Scheme of the experimental setup [23]
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Авторы [26] исследовали кольцевой термосифон, представляющий собой алюминиевую пласти-
ну с наножидкостью. В качестве рабочих жидкостей испытывались диэлектрическая жидкость 
на основе гидрофторэфиров HFE-7000 и графеновая наножидкость, коэффициент заполнения 
(30, 50 и 70 %) и концентрация графена (0,3, 0,5 и 1 мас.%) варьировались. Авторы определя-
ли влияние однородного и неоднородного источника тепла на тепловое сопротивление, а также 
проводили визуализацию для понимания процесса кипения. Было установлено, что при подавае- 
мой мощности 90 Вт и коэффициенте заполнения 70 % тепловое сопротивление снижается при-
мерно на 4 % по сравнению с коэффициентом заполнения 30 % для той же подаваемой мощности 
90 Вт. Термическое сопротивление снижается на 4 % при увеличении концентрации графена 
в наножидкости от 0 до 0,5 мас.%. Равномерный источник тепла имеет лучшую производитель-
ность теплопередачи, чем неоднородный. Из эксперимента по визуализации заметное количе-
ство графена было унесено из испарителя в конденсатор в процессе кипения, особенно при более 
высокой концентрации 1 %, что вызвало закупорку канала и повышение теплового сопротивле-
ния, поэтому концентрация графена должна поддерживаться ниже 0,5 %.

Исследование характеристик теплопередачи контурного и традиционных термосифонов с ис-
пользованием наножидкости FexOy/вода и CuxOy/вода в качестве теплоносителей описано в [27]. 
Авторы разработали методику получения наножидкостей с использованием нанопорошков,  
полученных лазерным распылением мишени. Экспериментальные исследования указывают,  
что наножидкости являются перспективными в качестве теплоносителя в двухфазных систе-
мах, эффективно повышая коэффициент теплопередачи до 25–50 %. Массовая концентрация на-
ночастиц увеличивает коэффициент теплопередачи и, следовательно, снижает тепловое сопро- 
тивление кольцевого термосифона по сравнению с чистой водой. Также в работе показано,  
что наножидкости являются перспективными в качестве рабочей жидкости в двухфазных системах, 
эффективно повышая коэффициент теплопередачи до 20–25 %. Кроме того, величина критиче-
ского теплового потока значительно возросла (на 30 %) по сравнению с чистой водой, что сви-
детельствует об эффективности использования наножидкостей в традиционных термосифонах.

Интенсификация теплообмена в термосифонах. Разработка новых конструкций термоси- 
фонов происходит одновременно с ростом спроса на эффективные пассивные и экологичные устрой- 
ства рассеивания тепла. Секция испарителя является ключевой в теплообмене такого типа 
устройств. Среди различных методов изменения конструкции испарителя наиболее простым 
и эффективным является модификация внутренней поверхности стенок испарителя. В [28] вы-
полнен анализ эффективности теплопередачи двухфазного контурного термосифона с внутрен-
ней стенкой испарителя, усиленной нанопористыми и микропористыми структурами. Были об-
наружены три режима течения: пузырьковый поток с пузырьковым кипением, турбулентный 
поток пар-жидкость с обратным потоком и разделенный поток пар-жидкость при высоких тепло-
вых потоках. В ходе исследований зафиксированы два основных типа нестабильности, вызван-
ных неэффективной теплопередачей при кипении и испарении: 1) при малых тепловых потоках, 
где присутствовал обратный поток; 2) при высоких тепловых потоках, когда подавлялся режим 
пузырькового кипения и периодически образовывались локальные пересыхания. Добавление  
на внутренние стенки испарителя нано- и микроструктурированных поверхностей препятство-
вало возникновению колебаний, вызывающих нестабильность потока, во всем диапазоне и уве-
личило коэффициент теплопередачи в связи с более высокой плотностью зарождения и частоты 
отрыва пузырьков. 

Чтобы решить проблему теплопередачи с высоким тепловым потоком, авторы работы [29] 
также сосредоточились на модификации испарителя, отметив при этом, что нельзя игнорировать  
влияние конденсатора на всю систему. Авторами разработан контурный термосифон с воздуш-
ным охлаждением и конденсатором, состоящим из змеевидной медной трубки и гофрированных 
алюминиевых ребер. Эксперимент подтвердил, что конденсатор такой конструкции обладает 
превосходными характеристиками и его можно использовать совместно с контурным термоси-
фоном для реализации теплового потока 266,7 Вт · см–2. Применение змеевидного трубчатого 
испарителя приводит к двум видам нестабильности потока, а степень заполнения является клю-
чевым фактором, влияющим на присутствие нестабильности потока. По наблюдениям авторов, 
оптимальным выбором является высокая степень наполнения, которая позволяет избежать неста-
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бильности потока и инициализирует более быстрый переходный процесс. При этом температура 
воздуха мало влияет на термическое сопротивление и максимальную разность температур кон-
турного термосифона, поэтому данный термосифон можно использовать в различных погодных 
условиях. Однако экстремальные погодные условия (например, чрезвычайно высокая/низкая 
температура) могут повлиять на работу контурного термосифона. Такой контурный термосифон 
со змеевидным ребристым трубчатым конденсатором с оптимизированным высоким коэффициен-
том заполнения может использоваться в мощном электронном оборудовании с реализацией на-
ружного отвода тепла.

Применение термосифонов в различных областях. Термосифоны используются во многих 
областях техники, включая, помимо прочего, космические системы, автомобильную промыш-
ленность, железнодорожную отрасль, охлаждение электрооборудования, электроники и лопаток 
турбин, теплообменники, системы контроля влажности в пищевой промышленности, фармоко-
логии, солнечные энергетические системы и атомная промышленность.

Широкое распространение получили двухфазные термосифоны, использующиеся для стаби-
лизации температур (сохранения почвы в замороженном состоянии) в регионах вечной мерзло- 
ты [30]. Эти термосифоны, как правило, с одним закопанным в землю концом, а вторым – вы-
веденным на поверхность и обдуваемым воздухом, работающие за счет подбора подходящих 
рабочих жидкостей с низкой температурой кипения. Они широко используются в условиях 
холодного климата для поддержания температуры автодорог, железных дорог, нефтепроводов 
в Америке, России и Китае. Наиболее приметным является Транс-Аляскинский трубопровод 
с примерно 120 тыс. установленных термосифонов, которые обеспечивают низкую температуру 
почвы под ним.

Рассматривается применение термосифонов даже в более нетрадиционных целях, таких  
как сохранение археологических памятников в Арктике или получение низкотемпературной 
энергии из отходов. В холодном климате термосифоны используются для консервации вечной 
мерзлоты и борьбы с обледенением дорог. Термосифоны успешно использовались для предот-
вращения миграции загрязняющих веществ из хвостохранилищ в Канаде и России. 

В [31] приводится обзор российского опыта по термостабилизации грунта с помощью тер-
мосифонов. В частности, рассматриваются возможности размещения испарителя термосифона 
в корпусе сваи, а также решения для термостабилизации грунтов под сооружениями большой 
площади или под группами зданий.

С помощью добавления в конструкцию ветряной мельницы термосифон был использован 
для сохранения земляного полотна в зоне вечной мерзлоты [32]. Такое устройство (рис. 2) мо- 
жет применяться для пассивного охлаждения, а также может быть адаптировано для охлаж- 
дения насыпей, оснований взлетно-посадочных полос, трубчатых фундаментов и других соо-
ружений. Результаты испытаний показали, что оно способно эффективно охлаждать земляное 

Рис. 2. Конструкция рабочего устройства 
и возможности его применения.  

Длина подземной части в исследуемой 
работе составляла 8 м [32]
Fig. 2. The working device  

and its application possibilities.  
The length of the underground part  

in the work under study was 8 m [32]
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полотно в зоне вечной мерзлоты на глубине  
до 8,0 м и радиусом 1,5 м на 0,6–1,0 °С при 
средней мощности 68,03 Вт.

Обеспечение допустимого температурного  
режима теплонагруженного и энергонасыщен- 
ного оборудования стало основной целью ра-
боты [33]. Были рассмотрены теплофизические 
аспекты и эффективность системы в энергети-
ческом теплонагруженном оборудовании тер-
мосифонов. Разработанный вспомогательный 
цилиндрический термосифон (рис. 3) в соста-
ве саморегулирующейся системы охлаждения 
способен отвести тепловой поток в диапазоне 
0,18–2,60 кВт/м2 в режиме с интенсивным ис-
парением теплоносителя (без кипения) на его 
нижней крышке и воздушным охлаждением 
конденсатора за счет естественной конвекции. 
Были исследованы различные рабочие жидкости и уровни заполнения (этанол показал лучшие 
результаты, чем дистиллированная вода), а также влияние теплоизоляции на эффективность 
зоны конденсации (теплоотдача ухудшилась, что заметно повлияло на характеристики устрой-
ства). Такие системы могут быть использованы на практике в качестве саморегулирующихся те-
плообменников, обеспечивающих допустимый температурный режим для теплонагруженного 
оборудования с умеренными тепловыми потоками.

В [34] приводится моделирование схемы отвода остаточных тепловыделений отработавших 
топливных сборок в шахте-хранилище с использованием термосифонов. Испаритель рассма-
триваемой термосифонной системы погружен в воду шахты-хранилища, а конденсатор выведен 
за пределы здания для теплового контакта с атмосферным воздухом. Была исследована эффек- 
тивность теплоотвода с использованием различных геометрических форм вытяжных труб (рис. 4),  
а также зависимость теплоотвода от температуры окружающего воздуха. Из рассмотренных 
наиболее эффективной оказалась эллиптическая форма вытяжной трубы с расположением тру-
бок конденсатора термосифона в нижней части (рис. 4, g). 

Для охлаждения бассейна с отработанным ядерным топливом с температурой 45–80 °С  
в [35] авторами было предложено использовать двухфазный термосифон длиной 3 м (рис. 5). В ходе 
работ были определены: нижний предел с частичным пересыханием – 20 % заправки рабочей 
жидкостью, предел кипения – 75 % (когда кипение не возникает вследствие недостаточного на-
грева для такого объема жидкости) и предел затопления – 100 %. При этом наивысшая эффек-
тивность охлаждения достигается с уровнем заполнения 30 %, что справедливо для всех рас- 

Рис. 3. Общий вид изучаемого устройства  
с и без теплоизоляции [33]

Fig. 3. General view of the studied device with  
and without thermal insulation [33]

Рис 4. Конденсационная часть термосифона (а) и варианты геометрических форм вытяжной трубы (b –g) [34]
Fig. 4. Condensation part of the thermosyphon (a) and variants of geometric shapes of the exhaust pipe (b–g) [34]
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смотренных температур охлаждаемой жид- 
кости.

Активное развитие и производство элек-
тромобилей – одна из наиболее актуальных 
на сегодняшний день тем. Для увеличения 
мощности электромотора необходимо пре-
жде всего решить проблему его охлажде- 
ния. В [36] предложено использование вра- 
щающихся кольцевых термосифонов в ро-
торе синхронного электродвигателя на по-
стоянных магнитах. Приводится численное  
моделирование одно- и двухконцевых тер-
мосифонов (рис. 6). Такие термосифоны 
позволяют значительно уменьшить осевые 
градиенты температур и снизить общий 
температурный уровень в целом по срав-
нению с ротором без термосифонов. При 
частотах вращения ротора и электриче-
ских токах в диапазонах 1200–1500 об/мин 
и 1000–1200 А максимальные температу-
ры в роторе с одно- и двухконцевыми вра-
щающимися кольцевыми термосифонами  
соответственно снижаются на 8–14 °С  
и 10–22 °С относительно ротора без термо-
сифонов.

В [37] авторы предложили новый пластинчатый термосифон для охлаждения элементов теле- 
коммуникационной системы. Были исследованы тепловые характеристики как свободного,  
так и принудительного конвективного охлаждения в вертикальном и горизонтальном направле-
ниях. Экспериментальные результаты показали более низкое тепловое сопротивление при более  

Рис. 5. Двухфазный термосифон для охлаждения бассейна 
с отработанным ядерным топливом [35]

Fig. 5. Two-phase thermosyphon for cooling  
a pool with spent nuclear fuel [35]

	                        a				     		          b
Рис. 6. Cтатор и ротор охлаждаемого электромотора и предлагаемый принцип охлаждения с помощью кольцевых 

термосифонов (a); одно- и двухконцевые термосифоны (пространственно расположенные в роторе)  
и градиенты температур на них при скорости ротора 1200 об/мин и силе тока 1000 А (b) [36]

Fig. 6. Stator and rotor of a cooled electric motor and the proposed cooling principle using ring thermosyphons (a);  
Single- and double-ended thermosyphons (spatially located in the rotor) and temperature gradients  

on them at a rotor speed of 1200 rpm and a current of 1000 A (b) [36]
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высоких коэффициентах наполнения и высоких тепловых потоках. Авторы также пришли к вы- 
воду, что благоприятная гравитационная ориентация увеличила интенсивность циркуляции 
жидкости в испытательном вертикальном пластинчатом термосифоне, что привело к лучшим  
по сравнению с горизонтальной ориентацией тепловым характеристикам. Также сделан вывод, 
что для охлаждения телекоммуникационного узла наиболее оптимальным является вертикаль-
ный термосифон. 

В [38] описаны эксперименты с плоским термосифоном в вертикальной ориентации для управ-
ления температурой авионики (электронного оборудования на борту самолета). Авторами было 
предложено решение для повышения эффективности отвода тепла от электронных корпусов 
в авиационной промышленности (рис. 7). В качестве термически активной стенки шасси был 
спроектирован и изготовлен плоский термосифон, состоящий из девяти пластин из нержаве- 
ющей стали, сложенных друг на друга и соединенных диффузионной сваркой. Он был изготов-
лен и испытан при пяти различных условиях нагрева (меняя размер и положение нагревателя) 
и четырех коэффициентах заполнения, а также пустой (без рабочей жидкости) для сравнения. 
Тепловое сопротивление варьировалось от 0,047 до 0,327 °C/Вт для испытаний с оптимальным 
коэффициентом заполнения. Увеличение входной мощности улучшило тепловые характери-
стики плоского термосифона, тогда как уменьшение размера нагревателя отрицательно на них 
повлияло. Термическое сопротивление нового термосифона оказалось конкурентоспособным  
по сравнению с другими плоскими тепловыми трубками, приведенными авторами.

Авторы [39] изучали охлаждающие характеристики термосифонов в гибридных системах 
кондиционирования воздуха с радиационным охлаждением. С использованием программно-
го обеспечения OpenModelica проводилось моделирование таких систем для анализа влияния 
структурных параметров на производительность. Также даны оценки потенциала энергосбере-
жения при применении радиационного охладителя на основе термосифона в жилых домах в пяти 
климатических зонах Китая. Результаты показали, что годовое потребление электроэнергии  
на охлаждение может быть снижено на 41–56 %, а период окупаемости для одноэтажного се-
мейного дома с оптимизированным радиационным охладителем на основе термосифона во всех 
пяти климатических зонах Китая составляет приблизительно от 8,4 до 10,5 лет.

В [40] исследуется интеграция термосифонов с радиационными охладителями в системах 
кондиционирования на основе CO2. Выполнен анализ условий для повышения энергоэффектив-
ности и снижения тепловой нагрузки в зданиях. Максимальные приросты КПД и эксергетиче-
ской эффективности составили 33,8 и 29,1 % соответственно, что сопоставимо с эффективностью 
интегрированной солнечной фотоэлектрической системы.

Авторы [41] рассмотрели принципы работы контурного термосифона и возможности его при-
менения в системе охлаждения центра обработки данных. Отмечается влияние выбора хладаген-
та и коэффициента заполнения, а также диаметра трубок на работу контурного термосифона. Рас- 
смотрено применение контурного термосифона как в охлаждении на уровне комнаты, так и на более 

Рис. 7. Схема пластин, из которых состоит плоский 
термосифон: 1 – замыкающая пластина испарителя; 

2 – пять слоев сетчатого фитиля, приваренных 
точечной сваркой поверх пластины испарителя; 

3 – набор из трех гребневидных пластин; 
4 – промежуточная пластина; 5 – набор из трех 

гребневидных пластин; 6 – замыкающая пластина 
конденсатора

Fig. 7. Schematic of the plates that compose the flat 
thermosyphon: 1 – evaporator closing plate;  

2 – five layers of screen mesh wick spot welded over  
the evaporator plate; 3 – set of three comb-like plates; 

4 – intermediate plate; 5 – set of three comb-like plates; 
6 – condenser closing plate
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локальных уровнях: охлаждение стойки с охлаждаемой электроникой и отдельных чипов. Также 
представлена комбинированная система компрессора и контурного термосифона, которая может 
использоваться для охлаждения базовой станции телекоммуникаций. Указывается на заметное 
улучшение энергоэффективности таких устройств по сравнению с использованием только кон-
диционирования воздуха в качестве метода охлаждения, поскольку система может использовать 
холодный уличный воздух непосредственно в качестве теплоотвода. В зависимости от темпера-
туры воздуха возможны различные режимы работы такой системы. 

Разработка пассивного охлаждения трехмерных многослойных интегрированных микросхем 
с использованием двухфазного миниатюрного термосифона приведена в [42]. Особенностью яв-
ляется то, что несколько нагревателей (чипов) пространственно разделены и охлаждаются одним 
устройством (рис. 8). Авторы рассматривали такие параметры, как угол наклона испарителя, 
вертикальное разделение между испарителем и конденсатором, а также режимы кипения на вы-
ходе из испарителя. Определено, что увеличение высоты стояка путем изменения угла наклона  
устройства заметно улучшает эффективность охлаждения. Однако большие углы наклона испа-
рителя не всегда способствовали повышению эффективности охлаждения, особенно при боль-
шей высоте стояка. При более высокой скорости потока угол наклона 0° обеспечивал несколько 
лучшую эффективность охлаждения, чем другие углы наклона. В целом такая схема эффективно 
справляется с охлаждением нескольких различных электронных компонентов с разным уровнем 
тепловыделения и является достаточно компактной для применения в дата-центрах.

Двухфазный кольцевой термосифон обладает значительными преимуществами в высокоэф-
фективной передаче тепла на большие расстояния для различных применений в тепловых маши-
нах и энергетике и не требует дополнительного потребления энергии. В [43] экспериментально 
исследованы теплопередающие характеристики двухфазного кольцевого термосифона с микро-
канальным испарителем и проведено их сравнение с характеристиками двухфазного кольце-
вого термосифона с гладкотрубным испарителем. В качестве рабочей жидкости использовался 
1,1,13,3-пентафторпропан (R245fa) при объемном коэффициенте наполнения 50–80 %. Результаты 
показали, что дополнительные микроканавки позволили сократить время запуска и достигнуть 
более низкой максимальной температуры по сравнению с температурным перерегулированием. 
Контурный термосифон с микроканальным испарителем показал более низкие температуры  
испарителя и лучшую изотермичность по сравнению с термосифоном с гладкотрубным испарите-
лем. Структуры с микроканалами могут смягчить локальное прерывистое пересыхание при уме-
ренных и высоких уровнях потребляемой мощности для коэффициентов заполнения 50 и 60 %.  
Добавление структур с микроканавками улучшило параметры теплопередачи термосифона 
с гладкотрубным испарителем, обладающим более низким термическим сопротивлением.

Фирмой Thermacore (США) были разработаны две конструкции контурных термосифонов 
с капиллярными структурами для охлаждения электроники: мощный контурный термосифон 

	                               a				     		            b

Рис. 8. Схема (а) и сечение (b) моделированного испарителя термосифона для охлаждения трехмерных 
многослойных интегрированных микросхем [42]

Fig. 8. Schematic (а) and cross-section (b) of a simulated thermosyphon evaporator for cooling three-dimensional  
multilayer integrated circuits [42]
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с горизонтальным испарителем в виде U-образной трубки, и контурный термосифон с горизон-
тальными трубопроводами и плоским испарителем, нагреваемым с обеих сторон. Испарители 
в обоих случаях были разработаны с учетом совместимости с компонентами электроники [44]. 
Для того чтобы избежать замерзания (при температурах окружающей среды ниже 0 °C), в каче-
стве рабочих жидкостей были предложены метанол и этиловый спирт. Результаты испытаний 
показали, что контурный термосифон с капиллярными структурами может работать с относи-
тельно высокими тепловыми потоками на стенке испарителя – до 70 Вт/см2 (с метанолом в каче-
стве рабочей жидкости). 

Заключение. Данная работа представляет собой краткий обзор результатов последних раз-
работок, исследований и практического применения в различных областях техники двухфазных 
теплопередающих устройств – двухфазных термосифонов. Рассмотрены возможности интен-
сификации теплообмена и влияние геометрии термосифона, в частности области испарителя, 
на его производительность. Приведены исследования влияния рабочей жидкости и объема за-
полнения. Выполнен анализ ряда работ, описывающих применения двухфазных термосифонов 
в разных областях, в частности, для термостабилизации грунта, охлаждения теплонагруженного 
оборудования или объектов с зонами постоянного интенсивного тепловыделения, а также охлаж-
дения электроники, в том числе миниатюрных чипов.
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Abstract. This article provides a brief overview of new technologies developed for use in construction in cold regions  
of China. These technologies aim to significantly reduce environmental impacts, lower winter heating costs, and create com-
fortable living spaces during high summer temperatures. Chinese scientists have created ultra-low-energy buildings that are 
not connected to the central heating system. The following technical solutions are proposed for highly efficient heat conserva-
tion in residential spaces during the winter: a prefabricated building structure integrated with a solar heating system; the use 
of heat accumulators; and the development of a geothermal tunnel ventilation and heating system. To reduce indoor tempera-
tures in the summer, the installation of sun protection systems, as well as thermally insulated roller blinds on doors, windows, 
and external walls, is proposed. These technological advances have been shown to significantly reduce building operating 
costs and carbon emissions. The implementation of this integrated technology in the construction of residential buildings  
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emissions over the entire life cycle.
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ИСПОЛЬЗОВАНИЕ НОВЫХ ТЕХНОЛОГИЙ ПРИ СТРОИТЕЛЬСТВЕ  
И ЭКСПЛУАТАЦИИ СБОРНЫХ ЗДАНИЙ  

С УЛЬТРАНИЗКИМ ЭНЕРГОПОТРЕБЛЕНИЕМ

Аннотация. Выполнен краткий обзор новых технологий, разработанных для использования при строительстве 
в холодных районах Китая с целью значительного снижения вреда, наносимого экологии, а также уменьшения эко-
номических затрат на оплату теплоснабжения в зимний период и создания комфортного температурного режима 
в жилых помещениях при высоких летних температурах. Китайскими учеными созданы здания со сверхнизким 
энергопотреблением, которые не подключены к системе центрального коммунального теплоснабжения. Для высо-
коэффективного сохранения тепла в жилых помещениях в зимний период предлагается применять следующие тех-
нические решения: сборная конструкция здания, интегрированная с системой солнечного отопления; использование 
теплоаккумуляторов; разработка геотермальной туннельной системы вентиляции и отопления. Для снижения тем-
пературы в помещениях в летний период предлагается установка солнцезащитных систем здания, а также систем 
теплоизоляционных рулонных штор на дверь, окна и наружные стены. Установлено, что использование данных тех-
нологических разработок приводит к значительному снижению эксплуатационной себестоимости зданий и количе-
ства углеродных выбросов. Внедрение комплексной технологии в строительство жилых зданий в холодных клима-
тических условиях обеспечит введение в эксплуатацию отопительных систем без коммунального теплоснабжения 
и снизит углеродный выброс за полный жизненный цикл. 

Ключевые слова: cборные здания с ультранизким энергопотреблением, возобновляемые источники энергии, 
экологически чистые источники энергии, централизованное отопление
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Introduction. Currently, great importance is placed on the development of technologies that con-
serve natural resources and minimize environmental impacts from industrial activities. These consider-
ations are also taken into account when developing construction technologies.

In recent years, Chinese scientists have been actively developing construction technologies for the 
construction of ultra-low-energy prefabricated buildings in cold regions, with the goal of eliminating 
the need for centralized heating provided by municipal heating networks during the winter. To meet 
residents’ needs for comfort, improve quality of life in cold regions, and reduce utility bills for energy 
consumption, the researchers propose using renewable energy sources. 
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The document “Plan for Implementing Carbon Peak in Urban and Rural Construction”1 (abbrevi-
ated as “Feasible Project”), jointly adopted by the Ministry of Housing, Urban and Rural Development 
of China and the National Development and Reform Commission of China, emphasizes that in order  
to save energy resources and eliminate the use of municipal central heating, it is necessary to promote 
the construction of buildings with ultra-low energy consumption. 

Drawing on innovative developments, patented achievements, and technical know-how, an inno-
vative team from the Hongsheng Institute of Building Sciences in Heilongjiang Province has created 
a demonstration park of prefabricated, ultra-low-energy buildings, which are proposed for construc-
tion in cold regions. All buildings in the park eliminate the need for central heating from the munici-
pal district heating network (the electricity cost for auxiliary heating with electric appliances in winter  
is approximately one-tenth of the cost of central heating from the municipal district heating network), 
and are equipped with air conditioning and refrigeration systems for the summer.

The China Society for Construction Engineering Standardization (CECS) has developed relevant 
industry and local standards (technical codes)2 for the construction of ultra-low-energy prefabricated 
structures. These standards offer an effective solution to the challenges associated with long-term depen-
dence on district heating in buildings in colder climates, which requires high and significant increases 
in energy consumption, leading to increased carbon emissions. Building operating costs and carbon 
emissions are significantly reduced by using ultra-low-energy building construction technologies that 
utilize highly efficient heat conservation methods and a prefabricated structure that can incorporate so-
lar heating systems, heat storage units, low-cost clean-energy heating systems, geothermal ventilation  
and heating systems, building sun protection systems, and thermal-insulating roller blind systems  
for doors, windows, and exterior walls.

Setting tasks. To significantly reduce environmental impacts and lower heating costs, Chinese sci-
entists have developed ultra-low-energy building designs that are not connected to the central district 
heating system.

The researchers’ goal was to use a comprehensive “passive priority + active optimization + intelli-
gent control” technology to create ultra-low-energy building construction technologies for highly effi-
cient heat conservation. The design utilizes a solar heating system and heat accumulators; a low-cost,  
zero-emission heating system powered by renewable energy; a geothermal tunnel ventilation and heating  
system; sun protection systems and thermally insulated roller blind systems for doors, windows,  
and exterior walls. These buildings utilize heating in winter without the need for district heating,  
and cooling in summer without air conditioning, reducing operating costs and carbon emissions. This 
solution to the problem in extremely cold and frigid regions of China and, for example, in arctic climate 
zones, makes it possible to abandon the use of central municipal heating during the winter period. 

Design features of ultra-low energy buildings. To address these challenges, the authors developed 
a number of design and engineering solutions. 

For example, to ensure maximum sunlight duration and intensity, the building’s orientation to the 
south or southwest should be 5–10°, and the distance between buildings should comply with the cur-
rent national standard GB 50180–2018 “Urban Residential District Planning and Design Standard”3, 
ensuring no light is blocked on the winter solstice. Furthermore, the building's shape should be straight, 
and the distance between two vertical walls should not exceed 12 meters.

Section 4.0.9 of GB 50180 sets out the solar insolation requirements for residential buildings (Table 1).

1 城乡建设领域碳达峰实施方案. URL: https://www.gov.cn/zhengce/zhengceku/202207/13/content_5700752.htm (date  
of access: 15.01.2025).

2 聚苯模块保温墙体应用技术规程. URL: https://www.gongbiaoku.com/book/5ez18337k1f (date of access: 15.01.2025) ;  
模塑聚苯（EPS）模块外保温工程技术规程. URL: https://www.gongbiaoku.com/book/b0q19850k5n (date of access: 
15.01.2025) ; 模塑聚苯模块混凝土剪力墙建筑技术规程 https://www.gongbiaoku.com/mobile/read/fyj19619rx4 (date of access:  
15.01.2025) ; 装配式聚苯模块保温系统技术规程. URL: https://csrcare.com/Standard/Show?id=105010 (date of access: 
15.01.2025) ; 聚苯模块外墙保温系统应用技术规程 URL: https://std.samr.gov.cn/db/search/stdDBDetailed?id=0EA8236BB
0E67B5BE06397BE0A0A2001 (date of access: 15.01.2025) ; 聚苯模块保温系统技术规程 URL https://std.samr.gov.cn/db/
search/stdDBDetailed?id=0EA8236BB0E67B5BE06397BE0A0A2001 (date of access: 15.01.2025).

3 城市居住区规划设计标准. URL: https://www.chinesestandard.net/PDF/BOOK.aspx/GB50180-2018 (date of access: 
15.01.2025).
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1. The solar insolation standard for residential buildings is no less than the solar insolation at 2:00 PM 
on the winter solstice.

2. Before constructing an addition to a building, it should be taken into account that this will not reduce  
the solar insolation of adjacent residential buildings. An exception is the installation of an external elevator.

3. The solar insolation duration for new residential buildings during the renovation of older areas 
should not be less than 1 hour during the Dahan season.

T a b l e  1.  Solar insolation requirements for residential buildings (GB 50180–2018, Table 4.0.9)

Parameter
The climate zone in which the construction is carried out

Climate zone I, II, III Climate zone IV Climate zone V, VI

Number of permanently residing 
population in cities, million people > 50 < 50 > 50 < 50 Unlimited

Days characterizing insolation January 19–21
(Dahan season, “Great Cold”) December 21 (winter solstice)

Duration of insolation, h > 2 > 3 > 1
Effective insolation range
(true solar time) from 8:00 a.m. to 4:00 p.m. from 9:00 a.m. to 3:00 p.m.

The beginning of insolation From the lower level of the window sill*

* The lower level for the window sill should be no less than 0.9 m.

These conditions are necessary to maximize solar energy gain and reduce the building’s heating load.
When designing detached buildings (particularly residential ones), certain conditions should also 

be taken into account. For example, the usable area of each building should be at least 80 m², so medi-
um-sized and large apartments should be the primary focus. A vestibule should be placed at the entrance 
to each building, especially in colder areas, to create a buffer space between the outdoor and indoor 
spaces to conserve heat. At least one living room (at least 4.5 m wide) should be located on the sunny 
side of the house (on the southern side). Tile or stone, which have significant heat storage properties,  
is recommended for the flooring in the south-facing living room and bedroom. Flexible flooring can  
be used for the north-facing bedroom. 

The design of a south-facing balcony must meet the following requirements:
a) the distance between the horizontal walls of the balcony must be equal to the width of the living 

room, with no dividing doors to ensure natural convection of cold and hot air, balance the room tempera-
ture, and improve indoor air quality;

b) the balcony overhang must be at least 1.6 m, which maximizes the area of light accumulation  
in the room;

c) the balcony skylight must be located at ceiling level to maximize sunlight penetration into the room 
and increase the illuminated floor area;

d) a monolithic thermal-insulating roller blind  
with a thermal resistance of R ≥ 1,5 (m2·K)/W must 
be in stalled on the inside of the balcony skylight  
on the south side of the building. Thermal-insu- 
lating curtains should also be installed on the 
inside of balcony windows on other sides of the 
building to improve (maintain) the thermal regi- 
me in this part of the house in winter and to shade 
the building in summer;

е) рlace at least 300 mm of planting soil on the  
balcony floor and install pots of soil on the in-
side of both walls to absorb solar thermal energy 
through the skylight and store it in the soil during 
the day (Figure 1). This is called light accumula-

Figure 1. An example of the placement of soil  
and plants on a balcony
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tion and is calculated using the formula: Q = C·M(T2–T1), where Q is the heat accumulated in the soil, J; 
C is the specific heat of the soil, J/(kg ℃); M is the volume of soil, m3; T1, T2 are the initial and final soil 
temperatures, respectively, in ℃. Based on the calculation formula, it can be concluded that the greater 
the volume of planting soil, the more thermal energy accumulates during the day and the higher the pos-
sibility of maintaining the thermal regime and increasing the temperature in unheated rooms.

These unique solar thermal energy accumulators on south-facing balconies act as renewable active 
heat sources, used in the design of ultra-low-energy buildings. Furthermore, other natural or non-standard 
heat accumulators can be used to accumulate solar thermal energy to increase and maintain a comfortable 
indoor temperature.

Design of an ultra-low energy building envelope. According to Fourier’s law: Q = K · F · ΔT, 
where Q is the building’s thermal load, W; K is the heat transfer coefficient of the building’s enclosing 
structure, W/(m · K); F is the area of the building’s enclosing structure, m2; △T is the temperature 
difference between the inside and outside of the building, K. The formula shows that the thermal load 
is directly proportional to the components on the right-hand side of the equation. After determining 
the building design scheme, F and ΔT are quantitative values, and only K is variable. 

Furthermore, the developed structures must meet the requirements of the current state standards  
GB 50016–2018 “Code for Fire Protection Design of Buildings”1 (Article 6.7 “Building Thermal Insulation 
and Exterior Finishes”) and GB 55037–2022 “General Code for Building Fire Protection”2 (Article 6.6  
“Building Thermal Insulation”). To reduce the U-value of the enclosing structure, the authors did not 
limit themselves to a single type, but used suitable materials and technical means.

As an example, consider a residential building with a height of 3.0 m. The thermal energy con- 
sumption for heating 1 m2 of residential space in winter should not exceed 10 kW h/(m2 year). To achieve 
this figure, the enclosing structure must meet the following requirements:

external wall heat transfer coefficient K ≤ 0.15 W/(m2 · K);
heat transfer coefficient K ≤ 1.20 W/(m2 · K);
structure airtightness class – not lower than 6, door airtightness class – not lower than class 8; 

airtightness classes must comply with GBT 7106 “Methods for testing airtightness, watertightness,  
and wind resistance in external doors and windows of buildings”;

the heat-transfer coefficient of the external window is K ≤ 0.80 W/(m2 · K), the air-tightness class  
is at least 8;

the heat-transfer coefficient of the roof is K ≤ 0.10 W/(m2 · K);
the heat-transfer coefficient on the first floor 

is K ≤ 0.10 W/(m2 · K) if the building has no 
basement; K ≤ 0.15 W/(m2 · K) – when the buil
ding has a basement, and the basement roof 
is the first floor; K ≤ 0.10 W/(m2 · K) – when 
the basement roof is exposed to the air;

the heat-transfer coefficient of the walls bet- 
ween apartments is K ≤ 1.50 W/(m2 · K);

the floor of a basement used as a garage 
with a separate entrance and a depth of at least  
4.0 m should not be insulated, although insula- 
tion is required on the basement roof. If the base- 
ment does not have a separate entrance and  
is used in conjunction with a vertical ground 
floor connection, a translucent floor (Figure 2) 
should be designed in the room with a south-
facing ground floor to directly allow light into 
the basement. A heat accumulator at least 100 mm 
thick should be installed on the underside of the 

1 建筑设计防火规范. URL: https://www.chinesestandard.net/PDF.aspx/GB50016-2018 (date of access: 15.01.2025).
2 建筑防火通用规范. URL: https://www.chinesestandard.net/PDF/English.aspx/GB55037-2022?Redirect (date 

of access: 15.01.2025).

Figure 2. Light-permeable floor on the ground floor  
of a building with ultra-low energy consumption
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floor base, allowing direct illumination of the basement through the translucent floor and accumulating 
heat through daylight;

the enclosing structure of the balcony located on the north side of the building must meet the 
performance requirements of ultra-low energy buildings in cold regions.

The window area to floor ratio of external north-facing windows should be equal to the lower limit 
established by the current national standard of the People’s Republic of China GB 55016–2021 “Standard 
for Daylighting Design of Buildings”1.

According to Article 3.2.1 of this normative document, the determination of the level of solar light 
acquisition during design should be based on architectural characteristics and operational functions 
(Table 2).

T a b l e  2.  Values of the natural illumination coefficient under different lighting conditions (GB 55016–2021,  
Table 3.2.2-1)

Level of sunlight 
reception

Lateral natural lighting Overhead natural lighting

standard value of natural 
illumination coefficient, %

standard value of the coefficient  
of natural illumination  

in a room, %

standard value of natural 
illumination coefficient, %

standard value of the coefficient  
of natural illumination  

in a room, %

I 5 750 5 750
II 4 600 3 450
III 3 450 2 300
IV 2 300 1 150
V 1 150 0.5 75

Heating in winter of rooms with low light, low temperature and high humidity. In winter, when 
light levels are low, temperatures are low, and humidity is high, solar thermal energy accumulators  
on south-facing balconies (see Figure 1) temporarily lose their ability to heat the space. Therefore, elec-
tric heat accumulators equipped with built-in heat-accumulating material should be used (Figure 3).

Compared to other heating technologies, using an electric heat accumulator offers advantages such 
as ease of installation, high efficiency and energy savings, safety and reliability, fully automatic control, 
and maintenance-free operation. 

Other important advantages of heat storage devices as a source of room temperature maintenance 
are worth mentioning.

First, energy savings. In Harbin, during the cold season, heating using the centralized municipal 
heating network lasts 180 days, starting on October 20th each year and ending on April 20th of the fol-
lowing year. This heating period can be divided into three 60-day periods: early winter, late winter, 
and spring.

1 建筑环境通用规范. URL: https://www.chinesestandard.net/PDF/English.aspx/GB55016-2021?Redirect (date 
of access: 15.01.2025).

        
	          		            a				      		  b

Figure 3. Operating scheme (a) and installation of an electric heat accumulator in the room (b)
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For ease of management and to reduce unnecessary energy consumption, early winter is also di-
vided into three periods: slightly cold, cold, and very cold. During the slightly cold and cold periods, 
a comfortable room temperature is maintained using a solar thermal energy harvesting device. During 
the very cold season, residents can decide to activate an electric heat storage device for heating based 
on the previous day’s weather. Off-peak periods for the municipal electric network are from 10:00 PM 
to 5:00 AM each day. During the very cold period, the time required to connect to the electric current  
is typically 2 to 2.5 hours.

During the 60 days of late winter, the time required to connect to the electric current for indoor 
heating is typically 3 to 5 hours. The late winter phase (60 days) also has three periods: very cold,  
cold, and slightly cold. During these periods, the electric current is used to maintain the temperature,  
as in early winter.

The three periods of early spring (60 days total) – extreme cold, moderate cooling, and micro-cold – 
are characterized by the use of electric heating to generate additional heat in buildings, as in early win-
ter. Overall, using inexpensive, clean energy for heating not only fully embodies behavioral energy 
conservation but also ensures that people can regulate the temperature in their buildings as they wish. 
It’s worth noting that by using different heat sources during different periods, people can independently 
set their own comfortable indoor temperature.

Secondly, reducing heating costs. In Harbin, the winter district heating fee for the municipal heating  
network (or so-called heating fee) is 38.32 yuan/m² for residential buildings and 43.30 yuan/m² for 
non-residential buildings. According to monitoring data over the past three years, in ultra-low-energy 
buildings, the cost of heating with electricity was approximately 4 yuan/m², or approximately 1/10th  
of the district heating fee for the municipal heating network.

Another way to conserve and save heat is to install a fresh air supply line along the outer perimeter 
of the building’s foundation and the inside of the basement’s outer wall from an underground ground 
source. The fresh air temperature in the supply system varies depending on external sources (in particu-
lar, the temperature of the soil, the basement, etc.).

As a rule, an exhaust fan (noise level ≤ 30 dB) is installed in the kitchen. Each block of the building 
should have a separate, insulated, and sealed fresh air intake vent. A sealed, insulated tunnel ventilation 
system should be designed for each entrance, ensuring fresh air flow into the rooms from the tunnel 
ventilation. A check valve should be installed at the inlet end of the ventilation system. All ventilation 
openings should be located on the north side of the building and terminated with rain caps.

Fresh air intake vents and ventilation controls should also be installed in each room. A wind indi-
cator panel should be placed at the top of the vent. A dynamic temperature indicator meter should be 
installed at the main fresh air intake. The number of fresh air intake vents in each room is individually 
designed based on the area used and the number of permanent residents.

Building sun protection system. When operating ultra-low-energy buildings, sun protection, which 
is necessary during hot periods, must also be considered (for example, in Harbin, from July to August, 
maximum outdoor temperatures can reach 30 °C and above).

Two shading methods are used in the design. The first method is protection from the outside of the 
building: installation of sun-protection curtains and awnings (Figure 4, a, b), planting tall broad-leaved 
trees on the southern side of the building, etc. The second method is sun-protection covering inside  
the building: installation of sun-protection curtains on the inner side of the southern light orientation  
to prevent daylight (Figure 4, c).

Energy-efficient reconstruction of existing buildings. To reduce energy consumption, existing 
buildings should be retrofitted according to technological requirements. However, several conditions 
must be considered.

1. The orientation and shape of the building being renovated must comply with the requirements  
for ultra-low-energy buildings.

2. When converting an existing building to a very low-energy building, a solar thermal storage unit 
capable of fully absorbing solar thermal energy should be installed on the sunny side of the building. 
Inside, potting soil should be used on balconies, and household items that are good heat carriers should 
be used indoors.
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3. The surface of the skylight, consisting of lightweight steel structures and glass curtain walls,  
adjoins the southern exterior wall of the building, forming a solar thermal energy collector. The surface 
heat transfer coefficient of the skylight is K ≤ 2.0 W/(m2 · K), the illumination angle is from 43° to 47°, 
the upper surface must be covered with sun protection roller blinds and thermal insulating roller blinds 
that meet regulatory requirements (R ≥ 1.5 (m2 · K)/W) and are height-adjustable (thermal insulating 
roller blinds can also be located on the lower surface of the skylight).

4. The foundation depth must be no less than the standard freezing depth multiplied by 0.7. The soil  
on the balcony, floors, walls, and furniture in living spaces must meet technical requirements. The 
underground surface must be covered with a thermal insulation layer with a heat transfer coefficient  
of K ≥ 0.15 W/(m2 · K). The heating method in the room must correspond to the illumination, humidity, 
and temperature levels at which the building is used. It is also necessary to install a ventilation system, 
open-light windows on the south wall of the building, and a fan in the upper part of the open-light window.

Monitoring energy consumption dynamics. As an example, we will consider an ultra-low-energy 
administrative building. A heat accumulator is used to collect thermal energy, and electrical equipment 
serves as the primary energy source for maintaining the building’s heat. In winter, the building main-
tains a temperature of approximately 18–24 °C. To accurately track the relationship between tempera-
ture and energy consumption, a system for collecting and monitoring temperature dynamics in rooms 
was installed. Sensors were installed on each floor and in the main room to track not only temperature 
changes but also other indicators, particularly environmental ones.

Figure 5 shows the data (temperature, PM2.5 content, carbon dioxide concentration, humidity, total 
volatile organic compounds, and formaldehyde) collected by the dynamic data collection and monitoring 
system on various dates. The resulting data is used to analyze the building’s performance.

     
	          		         a				      		            b

c

Figure 4. Examples of the use of external (a, b) and internal (c) building sun protection systems
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By monitoring changes in indoor environmental parameters in ultra-low-energy buildings during 
2023–2024, the accuracy of the dynamics and operational reliability of the developed thermal energy 
collection system were established. 

Conclusion. The economic and environmental benefits of using the technologies described in this  
article for the construction of prefabricated ultra-low-energy buildings in extremely cold regions of China 
are studied. Specifically, there is no need to connect such buildings to the district heating network during 
the winter or use air conditioners for cooling during the summer. The construction of ultra-low-energy 
buildings seamlessly combines prefabricated construction with new highly efficient heat conservation 
and cooling technologies, significantly reducing the building’s operating costs and carbon emissions.

The use of the technologies described in this article yields significant economic benefits. By elimi-
nating the need for connection to the district heating network, the cost of the entire construction cycle 
(including initial investment and operating costs) is significantly reduced compared to the traditional 
model. At the same time, environmental issues associated with carbon emissions and the extraction  
of fossil fuels used in thermal energy production are addressed. Furthermore, increasing energy self-suf-
ficiency reduces consumers’ dependence on district heating and increases the resilience of the ener-
gy system.

The described new construction technologies make it possible to eliminate the need for centralized 
public heating in ultra-low-energy buildings located in extremely cold regions of China and are prom-
ising for the design of energy-efficient construction and optimization of the energy system in similar 
climate zones.

       
	          		     a						          b

Figure 5. Information received by the data collection and monitoring system on January 8, 2023 (a)  
and January 2, 2024 (b)
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АНАЛИЗ ДИНАМИКИ РАСПРОСТРАНЕНИЯ ПРОДУКТОВ ДЕЛЕНИЯ  
И РАДИОНУКЛИДОВ ПОД ЗАЩИТНОЙ ОБОЛОЧКОЙ АЭС-200612

Аннотация. На основе международной терминологии определен и сформулирован термин «источник»: вели-
чина, представляющая физическую и химическую форму, а также учитывающая время выброса продуктов деления 
и других аэрозолей из материалов активной зоны и бетона в атмосферу первичной защитной оболочки или в бассейн 
выдержки. Рассмотрены химические формы продуктов деления и радионуклиды, которые могут выделяться из ак-
тивных зон современных легководных реакторов. Выполнено моделирование динамики распространения источника 
радиоактивных веществ с использованием программного пакета COMSOL Multiphysics методом LES с подсеточной 
моделью Смагоринского. Получены физически не противоречивые результаты, что указывает на корректную работу 
модели. Создан механизм для анализа распространения многокомпонентных потоков внутри защитной оболочки 
АЭС-2006. Работа поможет в уточнении данных для усовершенствования модели, созданной с использованием про-
граммного пакета COMSOL Multiphysics для моделирования пространственного распространения многокомпонент-
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ANALYSIS OF THE DYNAMICS OF DISTRIBUTION OF FISSION PRODUCTS  
AND RADIONUCLIDES UNDER THE CONTAINMENT OF NPP-2006

Abstract. The term “source” is defined in the article on the basis of international terminology as a value representing  
the physical and chemical form, as well as taking into account the time of release of fission products and other aerosols from 
core materials and concrete into the atmosphere of the primary containment or into the suppression pool. Chemical forms  
of fission products and radionuclides that can be released from the cores of modern light water reactors are considered.  
Modeling of the dynamics of the spread of the source of radioactive substances was simulated using the COMSOL Multiphysics 
software package using the LES method with the Smagorinsky subgrid model. Physically consistent results were obtained, 
indicating that the model functions correctly. A mechanism was developed to analyze the propagation of multicomponent 
flows under the containment of NPP-2006. The work will help to clarify the data needed to improve the model created using 
the COMSOL Multiphysics software package for simulating the spatial distribution of multicomponent gas flows and radio- 
active aerosols under the сontainment of NPP-2006 during accidents involving the release of radioactive substances and fis-
sion products.
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Введение. Концепция безопасности проектов АЭС основывается на максимальном сниже-
нии воздействия возможных аварийных выбросов на внешнюю среду. Эффективная ликвидация 
и максимальное снижение последствий аварийных выбросов требуют точной оценки динамики 
выброса и возможных трансформаций отдельных компонентов с учетом инфраструктуры и со-
стояния внешней среды в зоне аварийного воздействия. Величину радиационных последствий 
определяют качественный и количественный составы радиоактивных веществ в теплоносителе 
первого и второго контуров. 

Радиоактивность теплоносителя обусловлена наведенной активностью самого теплоносите-
ля, а также активностью продуктов коррозии, загрязняющих его. Кроме того, радиоактивные 
продукты деления могут попасть в теплоноситель в случае нарушения герметичности тепловы-
деляющих элементов. Физические характеристики реактора, такие как плотность нейтронного 
потока и энергетический спектр нейтронов, а также параметры контуров циркуляции, которые 
зависят от конструктивных решений (например, период циркуляции теплоносителя, время его 
облучения и проч.), и используемые материалы конструкции также влияют на долю вклада раз-
личных источников в радиоактивность теплоносителя.

Количество продуктов деления, которое может быть выброшено из атомной электростанции 
в результате аварии, является фундаментальным параметром для оценки последствий аварии 
для людей и окружающей среды.
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Нормативно-правовая среда и промышленные ожидания в разных странах различаются. 
Однако существует явное сходство в отношении необходимости определения эталонной величи-
ны, называемой либо «источник выброса», либо «источник в защитной оболочке».

Цель работы – сформировать понятие «источник», основываясь на международной термино-
логии, описать теплогидравлические процессы в активной зоне и определить основные состав-
ляющие выброса и их химические формы.

Выполнение работы поможет в уточнении данных для усовершенствования модели, создан-
ной с использованием программного пакета COMSOL Multiphysics для моделирования простран-
ственного распространения многокомпонентных потоков газов и радиоактивных аэрозолей под 
защитной оболочкой АЭС при авариях [1].

Международная терминология. Исходный термин «источник выброса» должен быть та-
ким, чтобы у регулирующих органов и специалистов отрасли была уверенность в том, что си-
стемы защитной оболочки и связанные с безопасностью конструкции и компоненты, которые 
были спроектированы с использованием этого исходного термина, обеспечат приемлемый уро-
вень безопасности. Таким образом, требуется, чтобы данный термин был репрезентативным  
для всех последовательностей с преобладанием риска, связанных с частичным или полным рас-
плавлением активной зоны.

В нормативных документах Республики Беларусь нет четко сформулированного термина, 
применяемого в отношении выброса в пределах защитной оболочки АЭС. В Законе Республики 
Беларусь «О радиационной безопасности» приведен обобщенный термин «источник ионизи- 
рующего излучения – радиоактивное вещество либо радиационное устройство»1. 

В российской документации аналогичный термин раскрыт немного шире: «Источник иони-
зирующего излучения – радиоактивное вещество или устройство, испускающие или способные 
испускать ионизирующее излучение, на которые распространяется действие норм радиационной 
безопасности»2.

В нормативных документах Республики Беларусь и Российской Федерации имеются терми-
ны «источник выделения загрязняющих веществ» и «источник выброса»3.

Источники выделения загрязняющих веществ – технологическое и иное оборудование, ма-
шины, механизмы, в которых происходит образование и от которых происходит выделение за-
грязняющих веществ, либо технологические процессы, при осуществлении которых происходят 
образование и выделение загрязняющих веществ4. 

Источник выброса – это сооружение, техническое устройство, оборудование, которые выде-
ляют в атмосферный воздух вредные вещества5. Следовательно, это любые объекты, которые 
распространяют в окружающий атмосферный воздух загрязняющие вещества, вредные для здо-
ровья людей и природы.

В 1999 г. Международным агентством по атомной энергии был разработан технический до-
кумент IAEA-TECDOC-1127 [2], который описывает упрощенный подход для оценки источни-
ка выброса. Согласно [2], исходный термин включает в себя временные рамки, доли (фракции),  
состав продуктов деления, выбрасываемых в защитную оболочку во время тяжелой аварии,  
и их поведение во взвешенном состоянии в атмосфере защитной оболочки. Этот термин следует 
использовать при решении следующих задач:

1) определение способности контайнмента к удержанию продуктов деления;
2) оценка внешних последствий в сопоставлении с критериями приемлемости;

1 О радиационной безопасности: Закон Респ. Беларусь, 18 июня 2019 г., № 198-З // ЭТАЛОН: информ.-поисковая 
система. URL: https://etalonline.by/document/?regnum=h11900198 (дата обращения: 25.06.2025).

2 Нормы радиационной безопасности (НРБ-99/2009): Санитарные правила и нормативы СанПин 2.6.1.2523-09. 
URL: https://www.ntcexpert.ru/documents/docs/nrb-99-2009.pdf (дата обращения: 25.06.2025).

3 Об охране атмосферного воздуха: Федер. закон от 4 мая 1999 г. № 96-ФЗ // КонсультантПлюс. Россия: 
справ. правовая система. URL: https://www.consultant.ru/document/cons_doc_LAW_22971 ; О внесении изменений 
в Федеральный закон «Об охране атмосферного воздуха»: Федер. закон от 13 июня 2023 г. № 255-ФЗ // Там же. URL: 
https://www.consultant.ru/document/cons_doc_LAW_449482 ; Об охране атмосферного воздуха: Закон Респ. Беларусь 
16 дек. 2008 г. № 2-З // ЭТАЛОН: информ.-поисковая система. URL: https://etalonline.by/document/?regnum=H10800002 
(дата обращения: 25.06.2025).

4 Об охране атмосферного воздуха: Закон Респ. Беларусь от 16 дек. 2008 г. № 2-З.
5 Об охране атмосферного воздуха: Федер. закон от 4 мая 1999 г. № 96-ФЗ.
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3) проектирование некоторых систем защитной оболочки;
4) проведение экологической экспертизы и оценки живучести ключевых компонентов;
5) обеспечение адекватной защиты от прямого излучения для персонала в блочном щите 

управления (БЩУ) и в других местах, куда имеется доступ.
Термин «источник» будем принимать как некую величину, представляющую физическую 

и химическую форму, а также учитывающую время выброса продуктов деления и других  
аэрозолей из материалов активной зоны и бетона в атмосферу первичной защитной оболочки  
или в бассейн выдержки. Таким образом, источник представляет собой материал, который вы-
брасывается в защитную оболочку как из контура теплоносителя реактора, так и из источников 
вне корпуса. 

В свою очередь источник в защитной оболочке – это переносимая по воздуху радиоактив-
ность и ее физико-химическая форма в атмосфере первичной защитной оболочки в зависимости 
от времени. Таким образом, данный термин представляет собой радиоактивность, которая может 
быть высвобождена из первичной защитной оболочки, и ее поведение в защитной оболочке.

Важнейшим барьером на пути выхода продуктов деления в окружающую среду является за-
щитная оболочка. Для смягчения последствий тяжелых аварий важно, чтобы защитная оболочка 
сохраняла свою способность служить эффективным барьером. Активности продуктов деления 
в защитной оболочке и эффективность систем безопасности должны приводить к приемлемым 
радиологическим последствиям, как определено в [3] для станций нового поколения.

Химический состав. Химические формы продуктов деления и радионуклиды, которые мо-
гут выделяться из активных зон современных легководных реакторов, должны быть аналогич-
ны тем, которые применимы к существующим легководным реакторам. В [4] приведены данные 
об измеренной активности некоторых радионуклидов в теплоносителе реактора типа ВВЭР-440 
и их вкладе в дозу. Анализируя эти данные, стоит обратить внимание на следующие вносящие 
большой вклад в дозу радионуклиды: 110mAg, 60Co, 58Co, 54Mn. Вклад изотопа 16N в активность 
теплоносителя, который образуется в реакторе в результате активации кислорода в воде бы-
стрым потоком нейтронов (16О(n,p) 16N), является основным источником γ-излучения в первом 
контуре реактора. 

Активность теплоносителя первого контура обусловлена продуктами деления, активации 
и коррозии.

Продукты деления. Стабильные и некоторые радиоактивные продукты деления, находясь 
в поле нейтронов работающего реактора, захватывают тепловые нейтроны, образуя новые ра-
дионуклиды и новые радиоактивные цепочки. В зависимости от физико-химического состоя-
ния и особенностей поведения в технологических системах АЭС и окружающей среде продукты  
деления классифицируются следующим образом [5]: 

1) благородные газы (аргон, криптон, ксенон); 
2) летучие/слаболетучие вещества (йод, цезий);
3) тритий и углерод; 
4) нелетучие вещества (лантан, стронций, рубидий и др.). 
Продукты активации. Нейтронное облучение некоторой части оборудования контура вы-

зывает образование и накопление радиоактивных продуктов неосколочного происхождения.  
На АЭС с реакторами, охлаждаемыми водой высокой степени очистки, основная активность  
теплоносителя образуется в результате активации кислорода воды. При этом образуются радио- 
нуклиды 16N, 13N, 18F, которые являются β- и γ-излучателями. Кроме того, возможна активация 
примесей, недостаточно полно удаленных в процессе водоподготовки. Это изотопы 23Na, 41K, 
27Al, 40Ar [5]. 

Продукты коррозии. Весьма важным источником активности теплоносителя всех реакторов 
являются продукты коррозии. Данные радионуклиды образуются в материалах активной зоны, 
внутрикорпусных устройств, в теплоносителе первого контура, и их перечень определяется пре-
имущественно элементным составом материалов, контактирующих с теплоносителем первого  
контура. Основная доля радионуклидов, определяющих радиационную обстановку за счет отло- 



Весці Нацыянальнай акадэміі навук Беларусі. Серыя фізіка-тэхнічных навук. 2025. Т. 70, № 4. С. 345–352 
Proceedings of the National Academy of Sciences of Belarus. Physical-technical series, 2025, vol. 70, no. 4, рр. 345–352 349

жений продуктов коррозии на внутренних поверхностях контура, приходится на изотопы 51Cr, 
54Mn, 60Co, 58Co, 59Fe.

Все внутрикорпусные устройства, находящиеся в поле нейтронов, сохраняют длительное 
время наведенную активность и представляют собой источники повышенной опасности при де-
монтаже, обслуживании и ремонте [5]. 

Радионуклиды, которые могут оказывать значимое воздействие на окружающую среду при 
работе АЭС и других предприятий ядерного топливного цикла, принято называть биологиче-
ски значимыми радионуклидами. При нормальной работе АЭС к группе биологически значи-
мых газообразных нуклидов относят те, период полураспада которых превышает несколько ми-
нут. С точки зрения радиационной опасности для персонала АЭС и населения, кроме нуклидов 
криптона, ксенона и йода, наибольшее значение имеют радионуклиды 89Sr, 90Sr, 134Cs, 137Cs, 95Zr, 
95Nb, 144Ce и др. 

К наиболее распространенным и биологически значимым для человека и живой природы 
радионуклидам техногенного происхождения (c точки зрения оценки опасности) специалисты 
относят 137Cs. Для этого нуклида характерны высокий выход при делении 235U и период полу-
распада, соизмеримый с продолжительностью жизни человека (30,05 лет) [6]. При распаде 137Cs 
образуются электроны с энергиями до 1,17 МэВ и γ-кванты в основном с энергией 662 кэВ. Таким 
образом, 137Cs со своим дочерним изотопом может создавать дозы как внешнего, так и внутрен-
него облучения различных объектов. Совокупность перечисленных характеристик этого радио-
нуклида и обусловливает его выбор в качестве реперного [6]. 

Моделирование аварийного сценария. Для анализа динамики распространения радиоак-
тивных веществ используются математические модели, основанные на уравнениях конвекции, 
диффузии и реакционной способности и проч. [7].

Главной задачей при моделировании реальных процессов является решение мультифизиче-
ской задачи, сочетающей несколько взаимосвязанных физических процессов в одной модели. 
Используя моделирование на основе уравнений, можно работать с функциями, содержащими 
общие переменные. При этом средства моделирования предоставляют возможность вносить лю-
бые изменения в набор и настройки используемых в расчете модулей (режимов).

Моделирование проводилось с использованием программного пакета COMSOL Multiphysics, 
имеющего несколько режимов. Каждый режим соответствует определенному физическому про-
цессу (например, теплопередаче) или набору уравнений (к примеру, уравнения Навье–Стокса). 
После определения геометрии необходимо выбрать режим моделирования и задать в полях  
редактирования свойства материалов и ограничения. Для моделирования нескольких физиче-
ских процессов достаточно выбрать дополнительные режимы и добавить их к уже существующим  
режимам.

Модули COMSOL Multiphysics предоставляют дополнительные режимы моделирования 
и удобную рабочую среду. Модули используют стандартную терминологию, библиотеки мате-
риалов, специализированные решатели и графические инструменты – в соответствии с областью 
применения. В то же время модули полностью интегрируются с COMSOL Multiphysics и друг 
с другом.

При различных категориях аварий выбрасываются преимущественно йод и цезий в виде  
аэрозольных частиц размером до 1 мм. Процесс осаждения радиоактивных веществ на харак-
терные поверхности внутри АЭС зависит также и от состояния шероховатости и наличия смо-
ченной поверхности. Предполагается, что в случае образования смоченной поверхности все аэро-
зольные частицы осядут на нее. Эффективность осаждения аэрозолей на твердой поверхности 
определяется структурой потока и свойствами аэрозоля.

Расчетная оценка начинается с определения сценария аварии. Авторами был рассмотрен сце-
нарий с потерей теплоносителя первого контура. Данное событие может привести к расплавле-
нию топлива и выбросу продуктов деления. 

Для моделирования этого процесса, как правило, используются математические модели, учи-
тывающие направление и скорость выброса; температурные градиенты; конфигурацию реактор-
ного зала и защитной оболочки; наличие физических препятствий.
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В данной работе в рамках формализованных шаблонов программного пакета COMSOL Multi- 
physics для моделирования были использованы следующие модули1: 

Heat Transfer in Fluids (ht) – теплопередача в жидкостях. Используется для моделирования 
теплопередачи в жидкостях посредством проводимости, конвекции и излучения;

Transport of Diluted Species (tds) – перенос разбавленных веществ. Применяется для расчета 
поля концентрации разбавленного растворенного вещества в растворителе. Транспорт и реакции 
веществ, растворенных в газе, жидкости или твердом теле, могут обрабатываться с помощью 
этого интерфейса. Движущими силами для транспорта могут быть диффузия по закону Фика, 
конвекция в сочетании с полем потока и миграция в сочетании с электрическим полем;

LES Smagorinsky (spf). Уравнения, решаемые интерфейсом LES Smagorinsky, представляют 
собой уравнение непрерывности для сохранения массы и уравнение Навье–Стокса, дополнен- 
ное членом турбулентной вязкости.

Динамика распространения источника радиоактивных веществ. В рамках исследова-
ния авторами рассмотрена авария с потерей теплоносителя первого контура. Геометрические 
размеры расчетной области соответствовали проектным характеристикам реакторов типа 
ВВЭР-1200. В расчетную область включены основные элементы гермообъема. При расчете так-
же учитывался теплосъем через систему пассивного отвода тепла из-под защитной оболочки. 
Задавались следующие параметры: диаметр течи – 50 мм, начальная температура истекающей 
жидкости – 400 К, максимальная скорость выброса – 15,8 м/с, давление внутри защитной обо-
лочки – 101 325 Па. 

Принятый нами термин «источник» учитывает физические и химические формы продуктов 
деления и радионуклидов, которые могут выделяться из активной зоны реактора. Следовательно, 
при моделировании процессов, протекающих внутри защитной оболочки при авариях, важно 
учитывать не только характеристики и свойства парогазового потока, но и присутствующие 
в нем продукты деления, активации и коррозии и их физико-химические свойства. В качестве 
одного из условий моделируемой аварии в замкнутом пространстве под оболочкой АЭС рассма-
тривался многокомпонентный газовый поток с примесью аэрозольных частиц. Относительная 
концентрация компонентов принята следующей: водород – 5 %, водяной пар – 85 %, инертные 
газы – 6 % криптона и 4 % ксенона. Скорость осаждения аэрозольных частиц принята равной 
0,02 м/с.

В результате численного моделирования системы уравнений многомерных уравнений сохра-
нения и учета замыкающих соотношений для компонентов смеси получены газодинамические 
характеристики турбулентного потока в замкнутом объеме. 

На рис. 1 отображено пространственное распространение относительной концентрации  
аэрозольных частиц и область их осаждения, время расчета – 300 с после начала аварии. На рис. 2  
представлены результаты пространственного распределения относительной концентрации водя-
ного пара и водорода. Красными линиями на рисунке обозначено направление поля скоростей. 
Время расчета составило 2000 с.

 Анализируя полученные результаты численного моделирования, можно отметить следующее: 
несмотря на достаточно высокую максимальную горизонтальную скорость в первые секунды 
струйного выброса, регистрируется подъем компонента водорода сразу вверх, а не вдоль на-
чального направления. Такой эффект фиксируется и в ряде экспериментальных наблюдений. 
С увеличением времени моделирования наблюдается стратификация компонентов газовой смеси. 
Водород как наиболее легкий газовый компонент скапливается преимущественно в верхней  
части оболочки. Было установлено, что на относительно высоких скоростях истечения газового 
потока приемлемая сходимость численных результатов достигалась только при использовании 
метода LES с подсеточной моделью Смагоринского. Осаждение аэрозольных частиц происходило 
на всех поверхностях, находящихся на пути движения потока.

На основе анализа полученных физически непротиворечивых данных можно сделать вывод, 
что результаты данного исследования могут служить основой для дальнейшего совершенство-

1 User’s Guide COMSOL Multiphysics. URL: https://doc.comsol.com/6.3/docserver/#!/com.comsol.help.comsol/helpdesk/
helpdesk.html (date of access: 03.02.2025).
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вания предложенной модели и программных модулей для анализа аварийных ситуаций на со-
временных АЭС. Разработанный механизм моделирования движения многокомпонентных газов 
и аэрозолей внутри защитной оболочки АЭС-2006 позволит улучшить существующие модели 
и повысить безопасность реакторов.

Заключение. Исходя из нормативных документов термин «источник» определен как вели-
чина, представляющая физическую и химическую форму, а также учитывающая время выброса 
продуктов деления и других аэрозолей из материалов активной зоны и бетона в атмосферу пер-
вичной защитной оболочки или в бассейн выдержки. 

Химические формы продуктов деления, которые могут выбрасываться из активной зоны ре-
актора, для будущих конструкций, вероятно, будут такими же, как и для нынешних конструк-

Рис. 1. Пространственное распределение относительной концентрации аэрозольных частиц
Fig. 1. Spatial distribution of the relative concentration of aerosol particles

	          		     a				      		        b

Рис. 2. Пространственное распределение относительной концентрации водяного пара (а) и водорода (b).  
Время расчета – 2000 с 

Fig. 2. Spatial distribution of relative concentration of water vapor (a) and hydrogen (b).  
Time of calculation – 2000 s
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ций активной зоны. Все продукты деления должны быть сконденсированы до входа в атмосферу 
защитной оболочки, за исключением инертных газов и небольшой доли йода. Таким образом, 
для получения члена источника в защитной оболочке все неблагородные газы и продукты де- 
ления в атмосфере первичной защитной оболочки можно считать присутствующими в виде  
аэрозолей.

В ходе работы выполнено моделирование турбулентного газового потока в гермообъеме 
с использованием программного пакета COMSOL Multiphysics методом LES с подсеточной мо-
делью Смагоринского. Получены физически непротиворечивые результаты, что указывает на кор-
ректную работу модели. Создан механизм для анализа распространения многокомпонентных 
потоков внутри защитной оболочки АЭС. Теплогидравлические алгоритмы необходимо исполь-
зовать вместе с автономной моделью продуктов деления или аэрозоля для прогнозирования вы-
броса из активной зоны. 

Не существует уникальной последовательности, которая приводит к ограничению выбро-
са продуктов деления. В случае выброса в защитную оболочку продуктов деления и их пове-
дения в защитной оболочке предложен разумно ограничивающий метод. Численные значения  
не приводятся, но принят параметрический подход, который позволит оценить исходный термин 
«источник» в защитной оболочке.
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