Preview

Proceedings of the National Academy of Sciences of Belarus. Physical-technical series

Advanced search

Developing of superconductive niobium cavities for accelerating devices

Abstract

The analyses of important characteristics of high purity niobium were done. The results of a study of structure and mechanical properties of welding joints, superconducting characteristics of the material after joining of welded components of superconducting radio frequency cavities are presented. The manufacturing technology of SRF niobium cavity using liquid impact forging, electron beam welding and chemical polishing was developed. The paper also describes the results of testing of the SRF 1.3 GHz single-cell niobium cavity manufactured in the PTI NAS of Belarus.

About the Authors

I. L. Pobal
Физико-технический институт НАН Беларуси
Belarus


S. V. Yurevich
Физико-технический институт НАН Беларуси
Belarus


References

1. XFEL: The European X-Ray Free-Electron Laser. Technical design report. DESY. Hamburg. 2006.

2. The International Linear Collider. Technical Design Report. Vol. 3: Accelerator. 2013.

3. Sekutowicz J. K. // Proc. of the CAS-CERN Accelerator School: RF for accelerators. Ebeltoft, Denmark, June 8-17, 2010. P. 369-393.

4. Диденко А. Н. Сверхпроводящие ускоряющие резонаторы. М., 2008.

5. Leemann C. W, Douglas D. R., Krafft G. A. // Annual Review of Nuclear and Particle Science. 2001. Vol. 51. P. 413-450.

6. Reece C. et al. // Proc. of the 1993 Particle Accelerator Conference. Washington, USA, May 17-20, 1993. Piscataway, 1993. P. 1016-1018.

7. Aune B. et al. // Physical Review Special Topics - Accelerators and Beams. 2001. Vol. 3. Issue 9.

8. Gresele A. et al. // Proc. of 16th Int. Conf. on RF Superconductivity. Paris, France, September 23-27, 2013. Geneva: JACoW, 2014. P. 177-179.

9. Sulimov A. et al. // Proc. of 16th Int. Conf. on RF Superconductivity. Paris, France, September 23-27, 2013. Geneva: JACoW, 2014. P. 234-236.

10. Saeki T. et al. // Proc. of the 5th Int. Particle Accelerator Conference. Dresden, Germany, June 15-20, 2014. Geneva: JACoW. P. 2528-2530.

11. zhai J. Y. et al. // Proc. of 16th Int. Conf. RF Superconductivity (SRF2013): Paris. France, September 23-27, 2013. Geneva: JACoW, 2014. P. 611-614.

12. Kui Z. // Nuclear Instruments and Methods in Physics Research A. 2002. Vol. 483. P. 125-128.

13. Azaryan N., Pobol I., Yurevich S. et al. // Proc. of RUPAC2012. September 24-28, 2012, Saint-Petersburg. Russi, 2012. P. 602-604.

14. Azaryan N., Pobol I., Yurevich S. et al. // Proc. of IPAC13. May 12-17, 2013, Shanghai. China, 2013. P. 2393-2395.

15. Батурицкий М., Карпович В. // Наука и инновации. 2013. №7. C. 39-41.

16. Padamsee H. RF Superconductivity: Science, Technology and Applications. New York: John Wiley & Sons, 2009.

17. Singer W. et al. // Physica C: Superconductivity. 2003. Vol. 386. P. 379-384.

18. Петраковский В. С., Журавский А. Ю. // Современные методы и технологии создания и обработки материалов. Кн. 2: Обработка металлов давлением. Мн., 2014. C. 156-162.

19. Lilje L. // Nuclear Instruments and Methods in Physics Research. 2004. Vol. 516. Issues 2-3. P. 213-227.

20. Antoine C. Materials and surface aspects in the development of SRF niobium. Geneva: EuCARD, 2012.


Review

Views: 611


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-8358 (Print)
ISSN 2524-244X (Online)