LOW-TEMPERATURE MAGNETIC ORDERING IN Sr2FeMoO6–δ NANO-SIZED GRAINS
Abstract
Single-phase nanosized Sr2FeMoO6-d powders were synthesized by the citrate-gel-method at pH = 4, 6, 9, with various degrees of superstructural ordering of Fe3+ and Mo5+ (P = 65% for pH = 4, P = 51% for pH = 6 and P = 20 % for pH = 9). Grain size of the powders are in the range of 200–600 nm. With that, the largest number of grains having a size of 550 nm was characteristic for powders with pH = 9 and 230 nm for pH = 4. It was established that the value of P decreases with increasing pH, which indicates an increase in the number of –Fe2+-О2--Fe2+- clusters with antiparallel distribution of iron spins which leads to a decrease in the total magnetic moment and the Curie temperature. In powders with pH = 4 the number of low dimensional grain is significantly larger than in powders with pH = 6 and 9, which led to their large magnetization value at T = 4,2- 19 K.
About the Authors
M. V. YARMOLICHBelarus
N. A. KALANDA
Belarus
References
1. Influence of preparation method on SrMoO4 impurity content and magnetotransport properties of double perovskite Sr2FeMoO6 polycrystals / C. L. Yuan [et al.] // Sol. Stat. Comm. – 2004. – N 129(9). – P. 551–554.
2. Interplay between phase formation mechanisms and magnetism in the Sr2FeMoO6 metal-oxide compound / N. Kalanda [et al.] // Cryst. Res. Technol. – 2011. – Vol. 6. – N 5. – P. 463–469.
3. Inhomogeneous magnetic state in the Sr2FeMoO6–d double perovskite / N. A. Kalanda [et al.] // Science of Advanced Materials. – 2015. – Vol. 7. – P. 446–454.
4. Magnetic properties of fine SFMO particles: Superparamagnetism / T. Suominen [et al.] // J. Magn. Magn. Mater. – 2007. – Vol. 309. – P. 278–284.
5. Absence of tunnel magnetoresistance in Sr2FeMoO6-based magnetic tunnel junctions / T. Fix [et al.] // Chem. Phys. Lett. – 2007. – Vol. 434. – P. 276–279.
6. Coey, J. M. D. Magnetism and Magnetic Materials/ J. M. D. Coe. – Cambridge University Press: New York, – 2010. – P. 231–263.