Preview

Proceedings of the National Academy of Sciences of Belarus. Physical-technical series

Advanced search

BOUNDARY CHARACTERISTICS IN HEAT-CONDUCTION PROBLEMS. ANALYSIS OF ACCURACY AND CONVERGENCE OF SOLUTIONS

Abstract

Results of numerical analysis of accuracy and convergence of solutions on the basis of the integral method of boundary characteristics are presented. It is shown by the example of consideration of a semi-bounded space with the first-kind boundary conditions that the solutions constructed are exact in essence because their error for parameters changing within a wide range comprises hundredth–ten-thousandth fractions of a percent.

About the Author

V. A. KOT
A. V. Luikov Heat and Mass Transfer Institute of the National Academy of Sciences of Belarus
Belarus


References

1. Кот, В. А. Метод граничных характеристик в задачах теплопроводности на основе интеграла теплового баланса / В. А. Кот // Весцi НАН Беларусi. Сер. фiз.-тэхн. навук. – 2016, – № 2. – С. 54–65.

2. Goodman, T. R. Application of integral methods to transient nonlinear heat transfer / T. R. Goodman // Adv. Heat Transfer. - New York: Academic Press, 1964. – Vol. 1. – P. 51–122.

3. Myers, T. G. Optimizing the exponent in the heat balance and refined integral methods / T. G. Myers // Int. Commun. Heat Mass Transfer. – 2009. – Vol. 36, N 2. – P. 143–147.

4. Langford, D. The heat balance integral method / D. Langford // Int. J. Heat and Mass Transfer. – 1973. – Vol. 16, N 12. – P. 2424–2428.

5. Wood, A. S. A new look at the heat balance integral method / A. S. Wood // Appl. Math. Model. – 2001. – Vol. 25, N 10. – P. 815–824.

6. Лыков, А. В. Теория теплопроводности / А. В. Лыков. – М.: Энергия, 1978. – 600 с.7. Goodman, T. R. The heat-balance integral – further considerations and refinements / T. R. Goodman // Transactions of ASME, ser. C. – 1961. – №. 1. – P. 83–93.

7. Федоров, Ф. М. Граничный метод решения прикладных задач математической физики / Ф. М. Федоров. – Новосибирск: Наука, 2000. – 220 с.

8. Кудинов, В. А. Теплопроводность и термоупругость в многослойных конструкциях / В. А. Кудинов, Б. В. Аверин, Е. В. Стефанюк. – М.: Высшая школа, 2008. – 305 с.

9. Стефанюк, Е. В. Дополнительные граничные условия в нестационарных задачах теплопроводности / Е. В. Стефанюк, В. А. Кудинов // Теплофизика высоких температур. – 2009. – Т. 47, № 2. – С. 269–282.

10. Myers, T. G. Application of the combined integral method to Stefan problems / T. G. Myers, S. L. Mitchell // Appl. Math. Model. – 2011. – Vol. 35, N 9. – P. 4281–4294.

11. Sadoun, N. On the refined integral method for the one-phase Stefan problem with time- dependent boundary conditions / N. Sadoun, E. K. Si-Ahmed, P. Colinet // Appl. Math. Model. – 2006. – Vol. 30, N 6. – P. 531–544.

12. Mitchell, S. L. Application of standard and refined heat balance integral methods to one- dimensional Stefan problems / S. L. Mitchell, T. G. Myers // SIAM Rev. – 2010. – Vol. 52, N 1. – P. 57–86.

13. Hristov, J. Y. The heat-balance integral: 2. Parabolic profile with a variable exponent: The concept, analysis and numerical experiments / J. Y. Hristov // C. R. Mecanique. – 2012. – Vol. 340, N 7. – P. 493–500.

14. Mitchell S. L. Application of heat balance integral methods to one-dimensional phase change problems / S. L. Mitchell, T. G. Myers // Int. J. Diff. Eq. – 2012. – Vol. 2012. Article ID 187902. 22 p. doi:10.1155/2012/187902.

15. Mitchell, S. L. Improving the accuracy of heat balance integral methods applied to thermal problems with time dependent boundary conditions / S. L. Mitchell, T. G. Myers // Int. J. Heat and Mass Transfer. – 2010. – Vol. 53, N 17. – P. 3540–3551.

16. Zien, T. F. Approximate calculation of transient heat conduction / T. F. Zien // AIAA J. – 1976. – Vol. 14, N 3. – P. 401–406


Review

Views: 615


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-8358 (Print)
ISSN 2524-244X (Online)