Preview

Proceedings of the National Academy of Sciences of Belarus. Physical-technical series

Advanced search

Correlation dependencies for burnup determination and actinides content in spent nuclear fuel

Abstract

Correlation dependencies have been obtained to determine the burn­out and content of actinides in spent nuclear fuel based on an analysis of published experimental data on the definition of burnout and isotopic composition of spent nuclear fuel rods for samples of PWR and VVER reactor types using statistical methods. Given dependencies of the mass concentration of actinides at the end of irradiation after checking for normality correspond to the initial experimental data. These relationships may be of interest to use for non­destructive methods for the purpose of express evaluation of spent nuclear fuel burnout at all stages of the nuclear cycle.

About the Authors

G. Z. Serebriany
Объединенный институт энергетических и ядерных исследований - Сосны НАН Беларуси
Belarus


D. O. Rudovich
Объединенный институт энергетических и ядерных исследований - Сосны НАН Беларуси
Belarus


M. L. Zhemzhurov
Объединенный институт энергетических и ядерных исследований - Сосны НАН Беларуси
Belarus


References

1. Radulescu G., Gauld I. C. and. Ilas G. SCALE 5.1 Predictions of PWR Spent Nuclear Fuel Isotopic Compositions, ORNL/TM2010/44, Oak Ridge National Laboratory, Oak Ridge, Tenn. March 2010.

2. Gauld I. C., Ilas G. and Radulescu G. Uncertainties in Predicted Isotopic Compositions for High Burnup PWR Spent Nuclear Fuel, NUREG/CR7012, ORNL/TM2010/41, prepared for the Nuclear Regulatory Commission by Oak Ridge National Laboratory, Oak Ridge. TN 2011.

3. Ilas G. and Gauld I. C. Analysis of Experimental Data for High Burnup PWR Spent Fuel Isotopic Validation-Vandellós II Reactor, NUREG/CR7013, ORNL/TM2009/321, prepared for the Nuclear Regulatory Commission by Oak Ridge National Laboratory, Oak Ridge. TN 2010.

4. Murphy B. D., Kravchenko J., Lazarenko A. et al. Simulation of Low-Enriched Uranium (LEU) Burnup in Russian VVER Reactors with the HELIOS Code Package, ORNL/TM1999/168.

5. Kalugin M., Shkarovsky D., Gehin J. A. VVER1000 LEU and MOX Assembly Computational Benchmark. Specification and Results// NEA/NSC/DOC(2002)10, OECD 2002. P. 156.

6. Jardine L. J. ISTC report «Radiochemical Assays of Irradiated VVER440 Fuel for Use in Spent Fuel Burnup Credit Activities», Lawrence Livermore National Laboratory, UCRLTR212202. April 2005.

7. Бибичев Б. А., Ловцюс А. В., Майоров В. П. и др. // Атомная энергия. 1980. Т. 48, вып. 5. С. 294-297.

8. Зеленков А. Г., Пирожков С. В., Пчелин В. А. и др. // Атомная энергия. 1981. Т. 51, вып. 1. С. 53-54.

9. Степанов А. В., Макарова Т. П., Бибичев Б. А. и др. // Атомная энергия. 1983. Т. 55, вып. 3, С. 141-145.

10. Makarova T. Investigation of Spent Nuclear Fuel from WWER440, WWER1000 and RBMK1000 Khlopin Radium Institute, St. Petersburg, Russia Consultant with IAEA, SGCP PSA 03.2004.

11. Standard Test Method for Atom Percent Fission in Uranium and Plutonium Fuel (Neodymium148 Method). American Society for Testing and Materials, ASTM E 321. 1996.


Review

Views: 574


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-8358 (Print)
ISSN 2524-244X (Online)