Preview

Proceedings of the National Academy of Sciences of Belarus. Physical-technical series

Advanced search

EQUAL GAIN COMBINING OVER GENERALIZED FADING CHANNELS

Abstract

We suggest the alternative approach based on definition of the moment generating function for the average signal-to-noise ratio (SNR) at the receiver output with the purpose to analyze performance of systems with equal gain combining over Nakagami-n (Rice) and Nakagami-q (Hoyt) fading channels under consideration of land, mobile and satellite telecommunication systems. We derive the exact closed-form mathematical expressions for average symbol error probability and outage probability using the Pade rational approximation to moment generating function of the SNR at the output of the combiner. We investigate the following important receiver performance such as the average SNR at the receiver output, fading, spectral effectiveness at weak input signals. Additionally, we study the rational Pade approximation of the moment generating function applying to the average SNR at the receiver output and evaluate bit error rate and the outage probability. Additionally, we investigate a possibility of modeling a Hoyt fading channel based on presentation Nakagami-m statistical model for evaluation of error performance under the use of equal gain combining technique. 

About the Author

V. P. Tuzlukov
Belarussian State Aviation Academy, Minsk
Belarus

D. Sc. (Physics and Mathematics), Professor, Head of the Department of Technical Maintenance of Aviation and Radio Electronic Equipment

77, Uborevich Str., 220096



References

1. Rice S. O. Statistical properties of a sine wave plus random noise. Bell System Technology Journal, 1948, no. 1 (27), pp.109–157. Doi: 10.1002/j.1538-7305.1948.tb01334.x

2. Nakagami M. The m-distribution – a general formula if intensity distribution of rapid fading. Hoffman W. G. (ed.). Statistical Methods in Radio Wave Propagation. Pergamon, Oxford, U.K., 1960, pp. 3–36. Doi: 10.1016/B978-0-08-009306- 2.50005-4

3. Kaur N. SNR and BER performance analysis of MRC and EGC receivers over Rayleigh fading channel. International Journal of Computer Applications, 2015, vol. 132, no. 9, pp. 12–17. Doi: 10.5120/ijca2015907520

4. Wijk F., Kegel F., Prasad R. Assessment of a pico-cellular system using propagation measurements at 1.9 GHz for indoor wireless communications. IEEE Transactions on Vehicular Technology, 1995, vol. 44, no. 1, pp. 155–162. Doi: 10.1109/25.350281

5. Rappaport T., Seidel Y. Multipath propagation models for in-building communications. IEEЕ 5th International Conference on Mobile Radio Personal Communications. 1989, pp. 69–74.

6. Parsons J. D. The Mobile Radio Propagation Channel. New York, John Wiley & Sons, Inc., 2000. 436 p. Doi: 10.1002/0470841524

7. Adeyemo Z. K., Ojedokun I. A., Akande D. O. Symbol error rate analysis of M-QAM with equal gain combining over a mobile satellite channel. International Journal of Electrical and Computer Engineering, 2013, vol. 3, no. 6, pp. 849–856. Doi: 10.11591/ijece.v3i6.4343

8. Hamza D. R., Aissa S., Anipa G. Equal gain combining for cooperative spectrum sensing in cognitive radio networks. IEEE Transactions on Wireless Communications, 2014, vol. 13, no. 8, pp. 4334–4345. Doi: 10.1109/twc.2014.2317788

9. Wu W. Satellite communications. Proceedings IEEE, 1995, vol. 85, no. 6, pp. 998–1010. Doi: 10.1109/5.598421

10. Chytil, B. The distribution of amplitude scintillation and the conversion of scintillation indices. Journal of Atmospheric and Terrestrial Physics, 1967, vol. 29, no. 9, pp. 1175–1177. Doi: 10.1016/0021-9169(67)90151-1

11. Bischoff K., Chytil B. A note on scintillation indices. Planetary and Space Science, 1969, vol. 17, no. 8, pp. 463–467. Doi: 10.1016/0032-0633(69)90112-3

12. Abu-Dayya A., Beaulieu C. Macrodiversity on Rician fading channels. IEEE Transactions on Communications, 1994, vol. 42, no. 6, pp. 2258–2267. Doi: 10.1109/26.293677

13. Vitetta G. M., Mengali U., Taylor D. P. An error probability formula for non-coherent orthogonal binary FSK with dual diversity on correlated Rician channels. IEEE Communications Letters, 1999, vol. 3, no. 2, pp. 43–45. Doi: 10.1109/4234.749357

14. Karagiannidis G. R., Georgopoulos C. J., Kotsopoulos S. A. Outage probability analysis for a Rician signal in L Nakagami interferers with arbitrary parameters. KICS Journal on Communications Networks, 1999, vol. 1, no. 1, pp. 26–30. Doi: 10.1109/jcn.1999.6596695

15. Ekanayake N. Equal-gain combining diversity reception of M-ary CPSK signals in Nakagami fading. IEEE Communications Letters, 2010, vol. 14, no. 4, pp. 285–287. Doi: 10.1109/lcomm.2010.04.092491

16. Annamalai A., Tellambura C., Bhargava V. K. Equal-gain diversity receiver performance in wireless channels. IEEE Transactions on Communications, 2000, vol. 48, no. 10, pp. 1732–1745. Doi: 10.1109/26.871398

17. Rohilla S., Patidar D. K., Soni N. K. Comparative analysis of maximum ratio combining and equal gain combining diversity techniques for WCDMA: a survey. International Journal of Engineering Inventions, 2013, vol. 3, no. 1, pp. 72–77.

18. Helstrom C. W. Ciomputing the distribution of sums of random sine waves and of Rayleigh-distributed random variables by saddle-point integration. IEEE Transactions on Communications, 1997, vol. 45, no. 11, pp. 1487–1494. Doi: 10.1109/26.649781

19. Baker G. A., Graves-Morris P. Pade Approximation. Cambridge, Cambridge University Press, 1996. 746 p. Doi: 10.1017/cbo9780511530074

20. Tuzlukov V. P. Signal Processing in Radar Systems. Boca Raton, CRC Press, 2013. 632 p.

21. Abramovitz M., Stegun A. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. New York, Dover, 1972. 1061 p.

22. Popov V. F. Noise immunity evaluation at diversity Nakagami fading and coherent weight combining. Omskii nauchnyi vestnik Ser. Pribory, mashiny i tekhnologii [Scientific Vestnik of the Omsk State University. Series: Equipment, Machinery and Technologies], 2012, vol. 113, no. 3, pp. 309–313 (in Russian).

23. Win M. Z., Mallik R. K., Chrisikos G. Higher order statistics of antenna subset diversity. IEEE Transaction on Wireless Communications, 2003, vol. 2, no. 5, pp. 871–875. Doi: 10.1109/twc.2003.816774

24. Bykhovskii M. A. Optimal linear correction of multipath diversity channel. Elektrosviaz’ = Telecommunications and Radio Engineering, 2011, no. 12, pp. 36–41 (in Russian).

25. Tuzlukov V. P. (ed.). Communications Systems: New Research. New York, NOVA Science Publishers Inc., 2013. 423 p.

26. Charash U. Reception through Nakagami fading multipath channels with random delays. IEEE Transactions on Communications. 1979, vol. 27, no. 4, pp. 657–670. Doi: 10.1109/tcom.1979.1094444

27. Shamai S., Verdu S. The impact of frequency-flat fading on the spectral efficiency of CDMA. IEEE Transactions on Information Theory, 2001, vol. 47, no. 4, pp. 1302–1327. Doi: 10.1109/18.923717

28. Papoulis A. Probability, Random Variables, and Stochastic Processes. New York, McGraw-Hill, 2002. 852 p.

29. Amindavar H., Ritcey J. A. Rade approximation of probability density functions. IEEE Transactions on Aerospace and Electronics Systems. 1994, vol. 30, no. 2, pp. 416–424. Doi: 10.1109/7.272264

30. Nikitin O. R., Polushin P. A., Girshevich M. V., Piatov V. A. Diversity combining digital signal processing procedure. Vestnik Riazanskogo gosudarstvennogo radiotekhnicheskogo universiteta = Vestnik of Ryazan State Radio Engineering University, 2009, vol. 27, no. 1, pp. 27–32 (in Russian).


Review

Views: 508


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-8358 (Print)
ISSN 2524-244X (Online)