INTEGRAL METHOD OF SOLVING HEAT-CONDUCTION PROBLEMS WITH THE SECOND-KIND BOUNDARY CONDITION. 1. BASIC STATEMENTS
https://doi.org/10.29235/1561-8358-2018-63-2-201-213
Abstract
About the Author
V. A. KotRussian Federation
Valery A. Kot – Ph. D. (Engineering), Senior Researcher
of the Laboratory of Turbulence.
15, P. Brovka Str., 220072, Minsk.
References
1. Goodman T. R. Application of Integral Methods to Transient Nonlinear Heat Transfer. Advances in Heat Transfer, 1964, vol. 1, pp. 51–122. https://doi.org/10.1016/S0065-2717(08)70097-2
2. Goodman T. R. Heat-Balance Integral – Further Considerations and Refinements. Transactions of the ASME, Journal of Heat Transfer. 1961, vol. 83, is. 1, pp. 83–85. https://doi.org/10.1115/1.3680474
3. Wood A. S. A new look at the heat balance integral method. Applied Mathematical Modelling, 2001, vol. 25, is. 10, pp. 815–824. https://doi.org/10.1016/S0307-904X(01)00016-6
4. Bio M. Variational principles in heat-exchange theory. Moscow, Energiya Publ., 1975. 209 p. (in Russian).
5. Dorodnitsyn A. A. General method of integral relations and its application to boundary layer theory. Kármán T. Von, Ballantyne A. M., Dexter R. R. (eds.). Advances in Aeronautical Sciences: Proceedings of the Second International Congress in the Aeronautical Sciences, Zürich, 12–16 September 1960. Volume 3. New York, Pergamon, 1962, pp. 207–219. https://doi.org/10.1016/B978-0-08-006550-2.50018-1
6. Hristov J. The heat-balance integral method by a parabolic profile with unspecified exponent: Analysis and exercises. Thermal Science, 2009, vol. 13, no. 2, pp. 27–48. https://doi.org/2298/TSCI0902027H
7. Sadoun, N., El-Khider Si-Ahmed, Colinet P. On the refined integral method for the one-phase Stefan problem with time-dependent boundary conditions. Applied Mathematical Modelling, 2006, vol. 30, iss. 6, pp. 531–544. https://doi.org/10.1016/j.apm.2005.06.003
8. Mitchell S. L., Myers T. G. Application of standard and refined heat balance integral methods to one-dimensional Stefan problems. SIAM Review, 2010, vol. 52, iss. 1, pp. 57–86. https://doi.org/10.1137/080733036
9. Myers T. G. Optimizing the exponent in the heat balance and refined integral methods. International Communications in Heat and Mass Transfer, 2009, vol. 36, iss. 2, pp. 143–147. https://doi.org/10.1016/j.icheatmasstransfer.2008.10.013
10. Langford D. The heat balance integral method. International Journal of Heat and Mass Transfer, 1973, vol. 16, iss. 12, pp. 2424–2428. https://doi.org/10.1016/0017-9310(73)90026-4
11. Mitchell S. L., Myers T. G. Improving the accuracy of heat balance integral methods applied to thermal problems with time dependent boundary conditions. International Journal of Heat and Mass Transfer, 2010, vol. 53, iss 17–18, pp. 3540–3551. https://doi.org/10.1016/j.ijheatmasstransfer.2010.04.015
12. Fedorov F. M. Boundary method of solving applied problems of mathematical physics. Novosibirsk, Nauka Publ., 2000. 220 p. (in Russian).
13. Stefanyuk E. V., Kudinov V. A. Additional boundary conditions in nonstationary problems of heat conduction. High Themperature, 2009. vol. 47, iss. 2, pp. 250–262. https://doi.org/10.1134/s0018151x09020163
14. Kot V. A. Method of Boundary Characteristics. Journal of Engineering Physics and Thermophysics, 2015, vol. 88, no. 6, pp. 1390–1408. https://doi.org/10.1007/s10891-016-1377-9
15. Kot V. A. Boundary Characteristics for the Generalized Heat-Conduction Equation and Their Equivalent Representations. Journal of Engineering Physics and Thermophysics, 2016, vol. 89, no. 4, pp. 985–1007. https://doi.org/10.1007/s10891-016-1461-1
16. Kot V. A. Integral Method of Boundary Characteristics: The Dirichlet Condition. Principles. Heat Transfer Research, 2016, vol. 47, no. 10, pp. 927–944. https://doi.org/10.1615/HeatTransRes.2016014883
17. Kot V. A. The Boundary Function Method. Fundamentals. Journal of Engineering Physics and Thermophysics, 2017, vol. 90, no. 2, pp. 366–391. https://doi.org/10.1007/s10891-017-1576-z