Production of alumo-matrix composite material modified by nanostructured cubic boron nitride
https://doi.org/10.29235/1561-8358-2018-63-3-271-279
Abstract
The structure and microhardness of an aluminum alloy with additives of nanostructured cubic boron nitride (cBN) after treatment under high pressure and temperature are investigated. А nanostructured powder of cBN with primary particles within 50–200 nm is used as a filler. A preliminary chemical-thermal modifying of the nanostructured cBN, which consists in its high-temperature annealing in the temperature range of 750–950 °C in a medium of aluminum-contai ning compounds, is carried out to increase the chemical affinity of the nanostructured cBN to the aluminum matrix. It is shown that the modifying of nanostructured cBN with aluminum increases the strength of the additives retention in the aluminum matrix. At the same time the increase in the concentration of BN additives from 1.5 to 5 wt.% as well as the increase in the treatment temperature at a fixed pressure promotes the increase in the microhardness of the material by a factor of 1.5 to 2 as compared with the base aluminum alloy without the addition of a modifier. An increase in the cBN concentration to 5 % by weight results in an increase in the fraction of smaller particle conglomerates (1–5 μm) in the material and in a decrease in the size of large inclusions to 10–20 μm. In this case, the distribution of BN particles in the aluminum matrix is more uniform in comparison with a material with a cBN content of 1.5 wt.%. In the material with the growth of temperature up to 1000 °С, cBN in aggregates is recrystallized with the formation of single-crystal (polycrystalline) particles with the size of 1–10 μm with faceting specific for cBN micron particles.
Keywords
About the Authors
P. A. VityazBelarus
Pyotr A. Vitiaz – Academician of the National Academy of Sciences of Belarus, D. Sc. (Engineering), Professor, Head of Academy Staff of the NAS of Belarus, Head Researcher JIMENASB.
66, Nezavisimosti Ave., 220072, Minsk
V. T. Senyut
Belarus
Vladimir T. Senyut – Ph.D. (Engineering), Leading Researcher.
12, Akademicheskaya Str., 220072, Minsk
M. L. Kheifetz
Belarus
Mikhail L. Kheifetz – D. Sc. (Engineering), Professor, Deputy Academician-Secretary of the Department of Physical-Engineering Sciences of the National Academy of Sciences of Belarus, Republic of Belarus), Head Researcher, SSPA «Center» of the NAS of Belarus.
66, Nezavisimosti Ave., 220072, Minsk
A. G. Kolmakov
Russian Federation
Alexey G. Kolmakov – Corresponding Member of the Rus sian Academy of Sciences, D. Sc. (Engineering), Deputy Director.
49, Leninsky Ave., 119991, Moscow
References
1. Marukovich E. I., Stetsenko V. Yu. Modifying of alloys. Minsk, Belaruskaya navuka Publ., 2009. 192 p. (in Russian).
2. Chernyshova T. A., Kobeleva L. I., Kalashnikov I. E., Bolotova L. K. Modification of cast aluminummatrix composite materials by refractory nanoparticles. Russian Metallurgy (Metally), 2009, no. 1, pp. 79–87. https://doi.org/10.1134/S0036029509010121
3. Vityaz P. A., Zhornik V. I., Kukareko V. A., Komarov A. I., Senyut’ V. T. Modification of materials and coatings by na no sized diamond-containing additives. Minsk, Belaruskaya navuka Publ., 2011. 522 p. (in Russian).
4. Vityaz P. A., Komarov A. I., Komarova V. I., Shipko A. A., Senyut’ V. T. Creation of nanostructured composite modifiers for aluminium alloys. Doklady Natsional’noi akademii nauk Belarusi = Doklady of the National Academy of Sciences of Belarus, 2011, vol. 55, no. 5, pp. 91–96 (in Russian).
5. Volochko A. T., Komarov A. I., Komarova V. I., Senyut’ V. T., Shipko A. A., Izobello A. Yu. Tribological behavior of piston alloy reinforced by micro- and ultradispersed ceramic particles. Journal of Friction and Wear, 2011, vol. 32, no. 2, pp. 183–191. https://doi.org/10.3103/S1068366611020127
6. Komarov A. I., Senyut’ V. T., Shipko A. A., Tainova A. A., Volochko A. T., Izobello A. Yu. New technical solutions for composites based on eutectic silumines. Vysotskii M. S. et al. (eds.) Innovatsii v mashinostroenii: sbornik nauchnykh trudov 3-i Mezhdunarodnoi nauchno-tekhnicheskoi konferentsii OIM NAN Belarusi, Minsk, 30–31 oktyabrya 2008 g. [Innovations in mechanical engineering: proceedings of the 3rd International Scientific and Technical Conference of the Joint Institute of Mechanical Engineering of the National Academy of Sciences of Belarus, Minsk, October 30–31, 2008]. Minsk, The Joint Institute of Mechanical Engineering of the National Academy of Sciences of Belarus, 2008, рp. 459–463 (in Russian).
7. Amosov A. P., Nikitin V. I., Nikitin K. V., Ryazanov S. A., Ermoshkin A. A. Scientific and technical principles of application of self-propagating high-temperature synthesis processes for production of cast aluminum matrix composite alloys, reinforced discretely by ceramic nanoparticles. Naukoemkie tekhnologii v mashinostroenii = Science Intensive Technologies in Mechanical Engineering, 2013, no. 8, pp. 3–10 (in Russian).
8. Amosov A. P., Luts A. R., Latuhin E. I., Ermoshkin A. A. Application of SHS processes for the production of in situ aluminum matrixcomposites discretely reinforced with nanosized titanium carbide particles. Review. Izvestiya vuzov. Tsvetnaya мetallurgiya = Proceedings of Higher Schools. Nonferrous Metallurgy, 2016, no. 1, pp. 39–49 (in Russian). https://doi.org/10.17073/00213438201613949
9. Vityaz P. A., Zhornik V. I., Il’yushchenko A. F., Senyut’ V. T., Komarov A. I., Korzhenevskii A. P., Ivakhnik A. V. Nanodiamonds of detonation synthesis: preparation and application. Minsk, Belaruskaya navuka Publ., 2013. 381 p. (in Russian). 10. Vityaz P. A., Ilyushchenko A. F., Senyut V. T., Heyfets M. L., Chernyak I. N., Kolmakov A. G., Klimenko S. A. Formation of aluminum-schungite composite material under pressure. Eurasian Physical Technical Journal, 2016, vol. 13, no. 1(25), pp. 35–39.
10. Vityaz P. A., Il’yushchenko A. F., Senyut’ V. T., Kheifets M. L., Chernyak I. N., Kusin R. A., Zhegzdrin D. I. Sintering of aluminummatrix composites modified with shungite carbon and corundum in conditions of high pressure. Vestnik nauki i obrazovaniya Severo-Zapada Rossii = Journal of Science and Education of North-West Russia , 2015, vol. 1, no. 1, pp. 55–65 (in Russian).
11. Golubev A. S., Kurdyumov A. V., Pilyankevich A. N. Boron nitride: structure, properties, production. Kiev, Naukova dumka Publ., 1987. 200 p. (in Russian).
12. Vityaz P. A., Senyut’ V. T. Synthesis and application of nanostructural superhard materials of tool appointment. Vestsi Natsyyanal’nai akademii navuk Belarusi. Seryya fizika-technichnych navuk = Proceedings of the National Academy of Sciences of Belarus. Physical-technical series, 2015, no. 3, pp. 60–76 (in Russian).
13. Senyut’ V. T., Kovaleva S. A., Gamzeleva T. V., Grigor’eva T. F. Investigation of the structural features of boron nitride after mechanical activation in attritor and planetary mill followed by agglomeration at high pressure and temperature. Khimiya v interesakh ustoichivogo razvitiya = Chemistry for Sustainable Development, 2016, vol. 24, no. 2, pp. 169–175 (in Russian). https://doi.org/10.15372/KhUR20160208
14. Vityaz P. A., Senyut’ V. T., Zhornik V. I. Nanostructured composite materials of tool appointment based on cubic boron nitride. Alifanov A. V., Vityaz P. A., Volochko A. T., Garbachevskii V. V., Glezer A. M., Govor G. A. et al. Klubovich V. V. (ed.). Promising materials and technologies. Vol. 2, chapter 14. Vitebsk, Belarus’ Publ., 2017. Pp. 254–277 (in Russian).
15. Vstovskii G. V., Kolmakov A. G., Bunin I. Zh. Introduction to multifractal parameterization of materials structures. Izhevsk, Scientific and Publishing Center “Regulyarnaya i khaoticheskaya dinamika”, 2001. 116 p. (in Russian).
16. Vityaz P. A., Ilyuschenko A. F., Kheifetz M. L., Chizhik S. А., Solntsev K. A., Kolmakov A. G., Alymov M. I., Barinov S. M. Technologies of constructional nanostructured materials and coatings. Minsk, Belorusskaya nauka Publ., 2011. 283 p. (in Russian).
17. Kolmakov A. G. Using the provisions of the system approach in studying the structure, the features of plastic deformation and the destruction of metals. Metally = Russian Metallurgy (Metally), 2004, no. 4, pp. 98–107 (in Russian).
18. Sevost’yanov M. A., Kolmakov A. G., Molokanov V. V., Zabolotnyi V. T., Umnov P. P., Kurakova N. V. Features of deformation and fracture of a composite material based on highstrength martensiticaging steel with a rapidly quenched surface layer of the Co69Fe4Cr4Si12B11 alloy. Deformatsiya i razrushenie materialov, 2010, no. 3, pp. 28–35 (in Russian).
19. Vityaz P. A., Ilyushchenko A. Ph., Senyut V. T., Kheifez M. L., Charniak I. N., Kusin R. A., Zhehzdryn D. I. High pressure sintering of aluminummatrix composites modified with shungite carbon and corundum. ЕРМА. Lightweight MMCs. Proceedings. 2016. Pp. 32962111–32962116. Available at: https://www.epma.com/publications/euro-pm-proceedings/product/world-pm2016-lightweight-mmcs (Accessed 15 October 2017).
20. Kolmakov A. G., Vityaz P. A., Kheifets M. L., Senyut’ V. T. Analysis of schungite minerals on micro- and mesostructural levels after treatment at conditions of high pressures and temperatures. Izvestiya vysshikh uchebnykh zavedenii. Khimiya i khimicheskaya tekhnologiya = Russian Journal of Chemistry and Chemical Technology, 2013, vol. 56, iss. 5, pp. 23–26 (in Russian).