Structure and optical properties of diamond-like carbon coatings
https://doi.org/10.29235/1561-8358-2018-63-3-280-289
Abstract
Using a hybrid method of cathodic arc (PVD) and chemical (CVD) deposition from the gas phase, a new type of coatings containing high amount of sp3 bonds of carbon, capable of absorbing effectively light has been developed.
This thin film material is a promised one for optical devices operating in open space environment as antireflective coating for photoreceiver bodies. The hybrid method permits to obtain effective light absorbing coatings having excellent mechanical and tribological properties and is able to sustain temperature cycling in a range from plus 150 to minus 100 oC. The optical characteristics of DLC coatings were studied depending on the content of sp2bound content. The combined physical and chemical deposition of DLC coatings allows to achieve a sufficiently high light absorption (a~10 5 cm–1) and low reflection with a relatively small coating thickness about 1 mm. It has been established that the antireflective properties of such coatings depend on the conditions for their preparation, first of all on hydrocarbon gas pressure
About the Authors
N. M. ChekanBelarus
Nikolai M. Chekan – Ph. D. (Physics and Mathematics), Head of the Laboratory of Nanomaterials and Ion-Plasma Processes.
10, Kuprevich Str., 220141, Minsk
I. P. Akula
Belarus
Ph. D. (Engeneering), Leading Re searcher.
10, Kuprevich Str., 220141, Minsk
E. P. Shpak
Belarus
Ekaterina P. Shpak – Researcher.
10, Kuprevich Str., 220141, Minsk
A. N. Navitskii
Belarus
Artem N. Navitskii – Graduate Student, Trainee Junior Researcher.
10, Kuprevich Str., 220141, Minsk
References
1. Vanhulsel A., Velasco F., Jacobs R., Eersels L., Havermans D., Roberts E. W., Sherrington I., Anderson M. J., Gaillard L. DLC solid lubricant coatings on ball bearings for space applications. Tribology International, 2007, vol. 40, iss. 7, pp. 1186−1194. https://doi.org/10.1016/j.triboint.2006.12.005
2. Tagawa M., Yokota K., Matsumoto K., Suzuki M., Teraoka Y., Kitamura A., Belin M., Fontaine J., Martin J.-M. Space environmental effects on MoS2 and diamond-like carbon lubricating films: Atomic oxygen-induced erosion and its effect on tribological properties. Surface and Coatings Technology, 2007, vol. 202, iss. 4–7, pp. 1003−1010. https://doi.org/10.1016/j.surfcoat.2007.07.069
3. Thongrattanasiri Sukosin, Koppens Frank H. L., de Abajo F. Javier García. Total light absorption in graphene. Physical Review Letters, 2012, vol. 108, iss. 4, 047401. https://doi.org/10.1103/PhysRevLett.108.047401
4. Chekan N. Chapter I. Advanced Pulsed Arc Technique of Fabrication of DLC Films and their Technical and Medical Applications. Tanaka Yuto S. (ed.). Diamond-like Carbon Films. Nova Science Pub Inc., 2011, рp. 1–38.
5. Ferrari A. C., Robertson J. Raman spectroscopy in carbons: from nanotubes to diamond. Philosophical Transactions of the Royal Society A. Mathematical, physical and engineering sciences, 2004, vol. 362, pp. 2267−2565. https://doi.org/10.1098/rsta.2004.1453
6. Davis L. E., MacDonald N., Palmberg P. W., Riach G. E., Weber R. E. Handbook of Auger Electron Spectroscopy. Eden Prairie, Physical Electronics Division of Perkin-Elmer Corporation, 1978. 249 p.
7. Zavaleyev V., Walkowicz J., Sawczak, M., Klein M., Moszyński D., Chodun R., Zdunek K. Determination of sp³ fraction in ta-C coating using XPS and Raman spectroscopy. Voprosy atomnoi nauki i tekhniki [Problems of Atomic Science and Technology], 2016, no. 4, pp. 84−92.
8. Davis C. A., Knowles K. M., Amaratunga G. A. J. Cross-sectional structure of tetrahedral amorphous carbon thin films. Surface and Coatings Technology, 1995, vol. 76−77, pp. 316−321. https://doi.org/10.1016/0257-8972(95)02553-7
9. Liu D., Benstetter G., Lodermeier E., Akula I., Dudarchyk I., Liu Y., Ma T. SPM investigation of diamond-like carbon and carbon nitride films. Surface and Coatings Technology, 2003, vol. 172, pp. 194−203. https://doi.org/10.1016/S0257-8972(03)00338-4
10. Ferrari A. C., Robertson J. Raman spectroscopy of amorphous, nanostructured, diamond–like carbon, and nanodiamond. Philosophical Transactions of the Royal Society A. Mathematical, physical and engineering sciences, 2004, vol. 362, pp. 2477−2512. https://doi.org/10.1098/rsta.2004.1452
11. Ferrari A. C. Determination of bonding in diamond-like carbon by Raman spectroscopy. Diamond and Related Materials, 2002, vol. 11, no. 3–6, pp. 1053−1061. https://doi.org/10.1016/S0925-9635(01)00730-0
12. Konshina E. A. Amorphous hydrogenated carbon and its application in optical devices. Saint Petersburg, ITMO University, 2010. 93 р. (in Russian).
13. Konshina E. A., Vangonen A. I. Features of the vibrational spectra of diamond-like and polymer-like films a-C:H. Se miconductors, 2005, vol. 39, no. 5, pp. 585−590. https://doi.org/10.1134/1.1923569
14. Landsberg G. S. Optics: textbook for high schools. Moskow, Fizmatlit Publ., 2003. 848 р. (in Russian).