Optimization of 3D printing parameters with sodium alginate hydrogel
https://doi.org/10.29235/1561-8358-2019-64-1-7-13
Abstract
About the Authors
Ye. M. DovydenkoBelarus
Postgraduate Student; Junior Researcher.
15, P. Brovka Str., 220072, Minsk; 36, F. Skaryna Str., 220141, Minsk.
V. Y. Agabekov
Belarus
Academician of the National Academy of Sciences of Belarus, D. Sc. (Chemistry), Professor, Director.
36, F. Skaryna Str., 220141, Minsk.
S. A. Chizhik
Belarus
Sergey A. – Academician of the National Academy of Sciences of Belarus, D. Sc. (Engineering), Professor, First Deputy Chairman of the Presidium of the National Academy of Sciences of Belarus; Chief Researcher.
66, Nezavisimosti Ave., 220072, Minsk; 15, P. Brovka Str., 220072, Minsk.
References
1. Zotova A. A., Vdovenko K. D. The urgency of using 3D printers in modern dentistry. Byulleten’ meditsinskikh Internet-konferentsii = Bulletin of Medical Internet Conferences, 2015, vol. 5, no. 11, pp. 1284 (in Russian).
2. Shustova V. A., Shustov M. A. Application of 3D Technologies in Orthopedic Dentistry. Saint Petersburg, SpetsLit Publ., 2016. 159 p. (in Russian).
3. Exhibition of advanced technologies for 3D printing and scanning. Meditsina, 2013–2017. Available: https://3dexpo.ru/ru/recent-industry-news/meditsina/ (accessed 18 December 2017) (in Russian).
4. Kulikovskaya V. I., Gilevskaya K. S., Pinchuk S. V., Kraskovskii A. N., Matievskii K. A. Thinfilm materials based on polysaccharides for cellular engineering. Tretii mezhdistsiplinarnyi molodezhnyi nauchnyi forum «Novye materialy»: sbornik materialov [The 3rd Interdisciplinary Youth Scientific Forum “New Materials”: Collection of materials]. Мoscow, 2017, рр. 786–789 (in Russian).
5. Bendtsen S. T., Quinnell S. P., Wei M. Development of a novel alginate-polyvinyl alcohol-hydroxyapatite hydrogel for 3D bioprinting bone tissue engineered scaffolds. Journal of Biomedical Materials Research, 2017, vol. 105, iss. 5, pp. 1457–1468. https://doi.org/10.1002/jbm.a.36036
6. O’Bryan C. S., Bhattacharjee T., Hart S., Kabb C. P., Schulze K. D., Chilakala I., Sumerlin B. S., Sawyer W. G., Angelini T. E. Self-assembled micro-organogels for 3D printing silicone structures. Science Advances, 2017, vol. 3, no. 5, e1602800. https://doi.org/10.1126/sciadv.1602800
7. Hong S., Sycks D., Hon Fai Chan, Shaoting Lin, Lopez G. P., Leong F. G. K. W., Xuanhe Zhao. 3D Printing of Highly Stretchable and Tough Hydrogels into Complex, Cellularized Structures. Advanced Materials, 2015, vol. 27, iss. 27, pp. 4035–4040. https://doi.org/10.1002/adma.201501099
8. Hinton T. J., Jallerat Q., Palchesko R. N., Park J. H., Grodzicki M. S., Hao-Jan Shue, Mohamed H. Ramadan, Hudson A. R., Feinberg A. W. Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels. Science Advances, 2015, vol. 1, iss. 9, pp. 1–10. https://doi.org/10.1126/sciadv.1500758
9. Khotimchenko Yu. S. Carbohydrate biopolymers for targeted delivery of protein preparations, nucleic acids and polysaccharides. Tikhookeanskii meditsinskii zhurnal = Pacific Medical Journal, 2014, no. 2, pp. 5–13 (in Russian).
10. Usov A. I. Alginic acids and alginates: analytical methods used for their estimation and characterisation of composition and primary structure. Russian Chemical Reviews, 1999, vol. 68, no. 11, pp. 957–966. https://doi.org/10.1070/rc1999v068n11abeh000532
11. Shchipunov Yu. A., Koneva E. L., Postnova I. V. Homogeneous alginate gels: phase behavior and rheological properties. Vysokomolekulyarnye soedineniya. Ser. A = Polymer Science, Series A, 2002, vol. 44, no. 7, pp. 1201–1211 (in Russian).
12. Skjåk‐Bræk G., Espevik T. Application of alginate gels in biotechnology and biomedicine. Carbohydrates in Europe, 1996, vol. 14, no. 19, pp. 237–242.
13. Nemtseva M. P., Filippov D. V., Fedorova A. A. Rheological properties of colloidal systems. Ivanovo, Ivanovo State University of Chemistry and Technology, 2016. 61 p. (in Russian).