Strengthening of the composite materials based on metal matrix and carbon nanotubes
https://doi.org/10.29235/1561-8358-2019-64-2-166-174
Abstract
Carbon nanotube (CNT)-reinforced powder nanocomposites based on copper matrix were successfully fabricated using a spark plasma sintering method. In this work, the mechanisms of hardening the metal matrix with nanosized filler particles were shown. A comparative analysis of the calculated and experimental values of the ultimate compressive strength for samples based on the copper matrix and carbon nanotubes was performed. Linear and root-mean-square models of hardening of composite materials with nano-sized filler were presented. The root-mean-square model allowed us to calculate reliably the values of the ultimate compressive strength at a concentration of CNT in the material up to 0.07 wt.%. The ultimate compressive strength decreases sharply when the content of CNTs in the material is more than 0.07 wt.%. The Orovan mechanism is the predominant mechanism of strengthening of composite materials: copper – CNT. The predominance of Orovan mechanism over other strengthening mechanisms is explained by the relatively low transfer efficiency of the load between the initial components of the material due to the weak interfacial connection between the matrix and the filler, the insufficiently uniform distribution of CNTs in the metal matrix, the agglomeration of nanosized filler, the location of a certain number of CNTs in the pore space of the metal matrix, the presence of pores of irregular shape. The results of the work were used in the development of new antifriction composite materials with improved strength properties for friction units of machines and mechanisms for various purposes.
Keywords
About the Authors
V. N. PasovetsBelarus
Vladimir N. Pasovets – Ph. D. (Engineering), Associate Professor; Doctoral Student
25, Mashinostroiteley Str., 220118, Minsk; 41, Platonov Str., 220005, Minsk
V. A. Kovtun
Belarus
Vadim A. Kovtun – D. Sc. (Engineering), Professor
35, Rechitsky Ave., 246021, Gomel
References
1. Mirza F., Chen D. L. A unified model for the prediction of yield strength in particulate-reinforced metal matrix nanocomposites. Materials, 2015, vol. 8, no. 8, pp. 5138–5153. https://doi.org/10.3390/ma8085138
2. Sun F., Shia Ch., Rhee K. Y., Zhao N. In situ synthesis of CNTs in Mg powder at low temperature for fabricating reinforced Mg composites. Journal of Alloys and Compounds, 2013, vol. 551, pp. 496–501. https://doi.org/10.1016/j.jallcom.2012.11.053
3. Merino C. A. I., Sillas J. E. L., Meza J. M., Ramirez J. M. H. Metal matrix composites reinforced with carbon nanotubes by an alternative technique. Journal of Alloys and Compounds, 2017, vol. 707, pp. 257–263. https://doi.org/10.1016/j.jallcom.2016.11.348
4. Han G., Wang Z., Liu K., Li Sh., Du X., Du W. Synthesis of CNT-reinforced AZ31 magnesium alloy composites with uniformly distributed CNTs. Materials Science and Engineering: A, 2015, vol. 628, pp. 350–357. https://doi.10.1016/j.msea.2015.01.039
5. Agarwal A., Bakshi S. R., Lahiri D. Carbon Nanotubes: Reinforced Metal Matrix Composites. Boca Raton, CRC Press, 2010. 325 р.
6. Kelly A., Tyson W. R., Mech J. Tensile properties of fibre-reinforced metals: copper/tungsten and copper/molybdenum. Journal of the Mechanics and Physics of Solids, 1965, vol. 13, iss. 6, pp. 329–350. https://doi.org/10.1016/0022-5096(65)90035-9
7. Yuan Q., Zeng X., Liu Y., Luo L. Microstructure and mechanical properties of AZ91 alloy reinforced by carbon nanotubes coated with MgO. Carbon, 2016, vol. 96, pp. 843–855. https://doi.org/10.1016/j.carbon.2015.10.018
8. George R., Kashyap K. T., Rahul R., Yamdagni S. Strengthening in carbon nanotube/aluminium (CNT/Al) composites. Scripta Materialia, 2005, vol. 53, iss. 10, pp. 1159–1163. https://doi.org/10.1016/j.scriptamat.2005.07.022
9. Miller W. S., Humphreys F. J. Strengthening mechanisms in particulate metal-matrix composites: reply to comments by arsenault. Scripta Metallurgica et Materialia, 1991, vol. 25, iss. 11, pp. 2623–2626. https://doi.org/10.1016/0956-716x(91)90080-k
10. Li Q., Viereckl A., Rottmair Ch. A., Singer R. F. Improved processing of carbon nanotube/magnesium alloy composites. Composites Science and Technology, 2009, vol. 69, iss. 7–8, pp. 1193–1199. https://doi.org/10.1016/j.compscitech.2009.02.020
11. Razorenov S. V., Garkushin G. V., Astafurova Ye. G., Moskvina V. A., Ignatova O. N., Malyshev A. N., Tkachenko M. I. The influence of dislocation density on the resistance of high-speed deformation and destruction in copper M1 and austenitic stainless steel. Fizicheskaya mezomekhanika = Physical Mesomechanics, 2017, vol. 20, no. 4, pp. 42–51 (in Russian).
12. Rashad M., Pan F., Tang A., Asif M. Effect of graphene nanoplatelets addition on mechanical properties of pure aluminum using a semi-powder method. Progress in Natural Science: Materials International, 2014, vol. 24, iss. 2, pp. 101–108. https://doi.org/10.1016/j.pnsc.2014.03.012
13. Bandow S. Radial thermal expansion of purified multiwall carbon nanotubes measured by X-ray diffraction. Japanese Journal of Applied Physics. Part 2,1997, vol. 36, no. 10B, pp. 14–23. https://doi.org/10.1143/jjap.36.l1403
14. Schelling P. K., Keblinski P. Thermal expansion of carbon structures. Physical Review B: Condensed Matter, 2003, vol. 68, no. 3, pp. 35–45. https://doi.org/10.1103/PhysRevB.68.035425
15. Li Q. Q., Rottmair C. A., Singer R. F. CNT reinforced light metal composites produced by melt stirring and by high pressure die casting. Composites Science and Technology, 2010, vol. 70, iss. 16, pp. 2242–2247. https://doi.org/10.1016/j.compscitech.2010.05.024
16. Gubenko S. I., Oshkaderov S. P. Nonmetallic Inclusions in Steel. Kiyev, Naukova dumka, 2016. 528 p. (in Russian).
17. Zhang Z., Chen D. L. Consideration of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites: A model for predicting their yield strength. Scripta Materialia, 2006, vol. 54, iss. 7, pp. 1321–1326. https://doi.org/10.1016/j.scriptamat.2005.12.017
18. Li C. D., Wang X. J., Liu W. Q., Wu K., Shi H. L., Ding C., Hu X. S., Zheng M. Y. Microstructure and strengthening mechanism of carbon nanotubes reinforced magnesium matrix composite. Materials Science and Engineering A, 2014, vol. 597, pp. 264–269. https://doi.org/10.1016/j.msea.2014.01.008
19. Pasovets V. N., Kovtun V. A., Pleskachevskii Yu. M. Production, Properties and Safety of Composites Based on Powdered Metals and Carbon Nanostructures. Gomel, BelSUT, 2011. 200 p. (in Russian).
20. Kovtun V. A., Pasovets V. N., Pleskachevskii Yu. M. Metal Carbon Composite Powder Materials for Critical Components of Machines and Mechanisms. Gomel, BelSUT, 2013. 283 p. (in Russian).
21. Li Q., Viereckl A., Rottmair Ch. A., Singer R. F. Improved processing of carbon nanotube/magnesium alloy composites. Composites Science and Technology, 2009, vol. 69, iss. 7–8, pp. 1193–1199. https://doi.org/10.1016/j.compscitech.2009.02.020
22. Mokdad F., Chen D. L., Liu Z. Y., Xiao B. L., Ni D. R., Ma Z. Y. Deformation and strengthening mechanisms of a carbon nanotube reinforced aluminum composite. Carbon, 2016, vol. 104, pp. 64–77. https://doi.org/10.1016/j.carbon.2016.03.038
23. Pasovets V. N., Ilyuschenko A. F., Kovtun V. A., Pleskachevsky Yu. M. Tribotechnical Powder Nanocomposites. Minsk, KII, 2016. 295 p. (in Russian).
24. Venugopal T., Prasad Rao K., Murty B. S. Synthesis of copper–alumina nanocomposite by reactive milling. Materials Science and Engineering A, 2005, vol. 393, pp. 382–386. https://doi.org/10.1016/j.msea.2004.10.035
25. Goujon C., Goeuriot P. Influence of the content of ceramic phase on the precipitation hardening of Al alloy 7000/ AlN nanocomposites. Materials Science and Engineering A, 2003, vol. 356, pp. 399–404. https://doi.org/10.1016/S0921-5093(03)00154-0
26. Ferguson J. B., Aguirre I., Lopez H., Schultz B. F., Cho K., Rohatgi P. K. Tensile properties of reactive stir-mixed and squeeze cast Al/CuOnp-based metal matrix nanocomposites. Materials Science and Engineering A, 2014, vol. 611, pp. 326– 332. https://doi.org/10.1016/j.msea.2014.06.008
27. Kelly P. M. The effect of particle shape on dispersion hardening. Scripta Metallurgica, 1972, vol. 6, no. 8, pp. 647– 656. https://doi.org/10.1016/0036-9748(72)90120-2