Preview

Известия Национальной академии наук Беларуси. Серия физико-технических наук

Пашыраны пошук

Влияние параметров электролитического осаждения на структуру и микромеханические свойства пленок Ni–Fe

https://doi.org/10.29235/1561-8358-2020-65-2-135-144

Анатацыя

Проведены исследования корреляции между режимами синтеза, химическим составом, кристаллической структурой и микроструктурой поверхности, а также механическими свойствами тонких наноструктурированных пленок Ni–Fe. Тонкие пленки Ni–Fe были получены в различных режимах электролитического осаждения: в режиме постоянного тока и в импульсных режимах с длительностью импульса 1 с, 10–3 и 10–5 с. Показано, что уменьшение длительности импульса до 10–5 с приводит к увеличению модуля упругости и твердости пленок благодаря малому размеру зерна и, соответственно, большому количеству границ зерен с повышенным сопротивлением пластической деформации. Исследовано влияние термической обработки при T = 100, 200, 300 и 400 °С на микроструктуру поверхности и микромеханические свойства пленок. После термообработки при 400 °С наблюдалось увеличение размера зерна от 6 до 200 нм, что в сочетании с процессами взаимодиффузии материала подслоя и пленки привело к значительному снижению твердости и модуля упругости. Пленки Ni–Fe с улучшенными механическими свойствами могут быть использованы как покрытия корпусов микроэлектроники для электромагнитной их защиты.

Аб аўтарах

В. Федосюк
Научно-практический центр Национальной академии наук Беларуси по материаловедению
Беларусь


Т. Зубарь
Научно-практический центр Национальной академии наук Беларуси по материаловедению
Беларусь


А. Труханов
Научно-практический центр Национальной академии наук Беларуси по материаловедению
Беларусь


Спіс літаратуры

1. Milton O. The Materials Science of Thin Films. London, Academic Press, 2002. 794 p. https://doi.org/10.1016/C2009-0-22199-4

2. Zangwill A. Physics at Surface. Cambridge, Cambridge University Press, 1996. 327 p. http://dx.doi.org/10.1017/CB09780511622564

3. Hocking M. G., Vasantasree V., Sidky P. Metal and Сeramic Сoatings. Longman Scientific &Technical, 1989. 670 p.

4. Kumar C. Magnetic Nanomaterials. Weinheim, Wiley-VCH, 2009. 663 p.

5. Morokhov I. D., Trusov L. I., Lapovok V. N. Physical Phenomena in Ultradisperse Media. Moscow, Energoatomizdat Publ., 1984. 224 p. (in Russian).

6. Suzdalev I. P. Nanotechnology: Physical Chemistry of Nanoclusters, Nanostructures and Nanomaterials. Moscow, URSS Publ., 2006. 592 p. (in Russian).

7. Fert A., Cros V., Sampaio J. Skyrmions on the track. Nature. Nanotechnology, 2013, vol. 8, no. 3, pp. 152–156. https://doi.org/10.1038/nnano.2013.29

8. Huang S., Beyerlein I. J., Zhou C. Nanograin size effects on the strength of biphase nanolayered composites. Scientific Reports, 2017, vol. 7, iss. 1, art. no. 11251. https://doi.org/10.1038/s41598-017-10064-z

9. Yuan R., Beyerlein I. J., Zhou C. Coupled crystal orientation-size effects on the strength of nano crystals. Scientific Reports, 2016, vol. 6, iss. 1, art. no. 26254. https://doi.org/10.1038/srep26254

10. Guo L., Oskam G., Radisic A., Hoffmann P. M., Searson P. C. Island growth in electrodeposition. Journal of Physics D: Applied Physics, vol. 44, no. 44, art. no. 443001. https://doi.org/10.1088/0022-3727/44/44/443001

11. Zubar T. I., Sharko S. A., Tishkevich D. I., Kovaleva N. N., Vinnik D. A., Gudkova S. A., Trukhanova E. L., Trofimov E. A., Chizhik S. A., Panina L. V., Trukhanov S. V., Trukhanov A. V. Anomalies in Ni–Fe nanogranular films growth. Journal of Alloys and Compounds, 2018, vol. 748, pp. 970–978. https://doi.org/10.1016/j.jallcom.2018.03.245

12. Zubar T. I., Fedosyuk V. M., Trukhanov A. V., Kovaleva N. N., Astapovich K. A., Vinnik D. A., Trukhanova E. L., Kozlovskiy A. L., Zdorovets M. V., Solobai A. A., Tishkevich D. I., Trukhanov S. V. Control of Growth Mechanism of Electrodeposited Nanocrystalline NiFe Films. Journal of the Electrochemical Society, 2019, vol. 166, no. 6, D173–D180. https://doi.org/10.1149/2.1001904jes

13. Oliver W. C., Pharr G. M. Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. Journal of Materials Research, 2004, vol. 19, no. 1, pp. 3–20. https://doi.org/10.1557/jmr.2004.19.1.3

14. Pavlov P. V., Khokhlov A. F. Solid State Physics. Moskow, Vysshaya shkola Publ., 2000. 495 p. (in Russian).

15. Gnedenko B. V. Course of Probability. Moscow, Nauka Publ., 1988. 447 p. (in Russian).

16. Koshkin N. I., Shirkevich M. G. Handbook of Elementary Physics. Moscow, Nauka Publ., 1982. 201 p. (in Russian).

17. Zubar T., Trukhanov A., Vinnik D., Astapovich K., Tishkevich D., Kaniukov E., Kozlovskiy A., Zdorovets M., Trukhanov S., Features of the Growth Processes and Magnetic Domain Structure of NiFe Nano-objects, Journal of Physical Chemistry C, vol. 123, no. 44, pp. 26957–26964. https://doi.org/10.1021/acs.jpcc.9b06997

18. Gong J., Riemer S., Kautzky M., Tabakovic I. Composition gradient, structure, stress, roughness and magnetic properties of 5–500 nm thin NiFe films obtained by electrodeposition. Journal of Magnetism and Magnetic Materials, 2016, vol. 398, pp. 64 –69. https://doi.org/10.1016/j.jmmm.2015.09.036

19. Min Y., Akbulut M., Kristiansen K., Golan Y., Israelachvili J. The role of interparticle and external forces in nanoparticle assembly. Nature Materials, 2008, vol. 7, iss. 7, pp. 527–538. https://doi.org/10.1038/nmat2206


##reviewer.review.form##

Праглядаў: 658


Creative Commons License
Кантэнт даступны пад ліцэнзіяй Creative Commons Attribution 3.0 License.


ISSN 1561-8358 (Print)
ISSN 2524-244X (Online)