Influence of electrodeposition parameters on structure and micromechanical properties of thin Ni–Fe films
https://doi.org/10.29235/1561-8358-2020-65-2-135-144
Abstract
The correlation between the synthesis modes, chemical composition, crystal structure, surface microstructure, and also the mechanical properties of thin nanostructured Ni – Fe films has been studied. Thin Ni–Fe films on the Si with Au sublayer were obtained using electrolyte deposition with different current modes: direct current and three pulsed modes with pulse duration of 1 s, 10–3 and 10–5 s. It is shown that a decrease in the pulse duration to 10–5 s leads to an increase in the film elastic modulus and the hardness due to the small grain size and a large number of grain boundaries with increased resistance to plastic deformation. The effect of heat treatment at 100, 200, 300, and 400 °C on the surface microstructure and micromechanical properties of the films was investigated. An increase in grain size from 6 to 200 nm was found after heat treatment at 400 °C which, in combination with interfusion processes of the half-layer material, led to a significant decrease in hardness and elastic modulus. Ni–Fe films with improved mechanical properties can be used as coatings for microelectronic body for their electromagnetic protection.
About the Authors
V. M. FedosyukBelarus
Valeri M. Fedosyuk – Corresponding Member of the National Academy of Sciences of Belarus, D. Sc. (Physics and Mathematics), General Director
19, P. Brovka Str., 220072, Minsk
T. I. Zubar
Belarus
Tatiana I. Zubar – Ph. D. (Physics and Mathematics), Senior Researcher
19, P. Brovka Str., 220072, Minsk
A. V. Trukhanov
Belarus
Alex V. Trukhanov – Ph. D. (Physics and Mathematics), Leading Researcher
19, P. Brovka Str., 220072, Minsk
References
1. Milton O. The Materials Science of Thin Films. London, Academic Press, 2002. 794 p. https://doi.org/10.1016/C2009-0-22199-4
2. Zangwill A. Physics at Surface. Cambridge, Cambridge University Press, 1996. 327 p. http://dx.doi.org/10.1017/CB09780511622564
3. Hocking M. G., Vasantasree V., Sidky P. Metal and Сeramic Сoatings. Longman Scientific &Technical, 1989. 670 p.
4. Kumar C. Magnetic Nanomaterials. Weinheim, Wiley-VCH, 2009. 663 p.
5. Morokhov I. D., Trusov L. I., Lapovok V. N. Physical Phenomena in Ultradisperse Media. Moscow, Energoatomizdat Publ., 1984. 224 p. (in Russian).
6. Suzdalev I. P. Nanotechnology: Physical Chemistry of Nanoclusters, Nanostructures and Nanomaterials. Moscow, URSS Publ., 2006. 592 p. (in Russian).
7. Fert A., Cros V., Sampaio J. Skyrmions on the track. Nature. Nanotechnology, 2013, vol. 8, no. 3, pp. 152–156. https://doi.org/10.1038/nnano.2013.29
8. Huang S., Beyerlein I. J., Zhou C. Nanograin size effects on the strength of biphase nanolayered composites. Scientific Reports, 2017, vol. 7, iss. 1, art. no. 11251. https://doi.org/10.1038/s41598-017-10064-z
9. Yuan R., Beyerlein I. J., Zhou C. Coupled crystal orientation-size effects on the strength of nano crystals. Scientific Reports, 2016, vol. 6, iss. 1, art. no. 26254. https://doi.org/10.1038/srep26254
10. Guo L., Oskam G., Radisic A., Hoffmann P. M., Searson P. C. Island growth in electrodeposition. Journal of Physics D: Applied Physics, vol. 44, no. 44, art. no. 443001. https://doi.org/10.1088/0022-3727/44/44/443001
11. Zubar T. I., Sharko S. A., Tishkevich D. I., Kovaleva N. N., Vinnik D. A., Gudkova S. A., Trukhanova E. L., Trofimov E. A., Chizhik S. A., Panina L. V., Trukhanov S. V., Trukhanov A. V. Anomalies in Ni–Fe nanogranular films growth. Journal of Alloys and Compounds, 2018, vol. 748, pp. 970–978. https://doi.org/10.1016/j.jallcom.2018.03.245
12. Zubar T. I., Fedosyuk V. M., Trukhanov A. V., Kovaleva N. N., Astapovich K. A., Vinnik D. A., Trukhanova E. L., Kozlovskiy A. L., Zdorovets M. V., Solobai A. A., Tishkevich D. I., Trukhanov S. V. Control of Growth Mechanism of Electrodeposited Nanocrystalline NiFe Films. Journal of the Electrochemical Society, 2019, vol. 166, no. 6, D173–D180. https://doi.org/10.1149/2.1001904jes
13. Oliver W. C., Pharr G. M. Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. Journal of Materials Research, 2004, vol. 19, no. 1, pp. 3–20. https://doi.org/10.1557/jmr.2004.19.1.3
14. Pavlov P. V., Khokhlov A. F. Solid State Physics. Moskow, Vysshaya shkola Publ., 2000. 495 p. (in Russian).
15. Gnedenko B. V. Course of Probability. Moscow, Nauka Publ., 1988. 447 p. (in Russian).
16. Koshkin N. I., Shirkevich M. G. Handbook of Elementary Physics. Moscow, Nauka Publ., 1982. 201 p. (in Russian).
17. Zubar T., Trukhanov A., Vinnik D., Astapovich K., Tishkevich D., Kaniukov E., Kozlovskiy A., Zdorovets M., Trukhanov S., Features of the Growth Processes and Magnetic Domain Structure of NiFe Nano-objects, Journal of Physical Chemistry C, vol. 123, no. 44, pp. 26957–26964. https://doi.org/10.1021/acs.jpcc.9b06997
18. Gong J., Riemer S., Kautzky M., Tabakovic I. Composition gradient, structure, stress, roughness and magnetic properties of 5–500 nm thin NiFe films obtained by electrodeposition. Journal of Magnetism and Magnetic Materials, 2016, vol. 398, pp. 64 –69. https://doi.org/10.1016/j.jmmm.2015.09.036
19. Min Y., Akbulut M., Kristiansen K., Golan Y., Israelachvili J. The role of interparticle and external forces in nanoparticle assembly. Nature Materials, 2008, vol. 7, iss. 7, pp. 527–538. https://doi.org/10.1038/nmat2206