Application of titanium dioxide barrier layers for the ferromagnetic/ferroelectric multiferroics formation
https://doi.org/10.29235/1561-8358-2020-65-2-145-152
Abstract
The layered multiferroics Co/PZT were obtained by ion-beam sputtering-deposition method, where PZT is a ferroelectric ceramic based on lead titanate zirconate of the composition PbZr0.45Ti0.55O3 with a thermostable plane-parallel ferroelectric/ferromagnet interface. Using cross-sectional scanning electron microscopy (SEM), we studied the interface of a cobalt layer up to several micrometers thick with a thick ceramic substrate of lead zirconate titanate. It has been shown that the use of a titanium dioxide barrier layer of TiO2 instead of PZT allows quality improvement of the interface by reducing the duration of ion-beam planarization of the ferroelectric substrate, and also to eliminate the formation of intermediate chemical compounds. Based on the data of X-ray phase analysis (XRD), it was concluded that the TiO2 layer is amorphous. Magnetoelectric measurements have shown that the use of titanium dioxide instead of PZT under appropriate planarization modes can increase the low-frequency magnetoelectric effect to 5 mV/(cm∙Ое), compared with structures with a sputtering planarizing layer of PZT, where the magnitude of the low-frequency magnetoelectric effect is 2 mV/(cm∙Оe). These results allow us to improve the characteristics of these structures when used as sensitive elements in devices for formation – processing of information and magnetic field sensors based on the magnetoelectric effect.
About the Authors
A. I. StognijBelarus
Aleksandr I. Stognij – Ph. D. (Physics and Mathematics), Leading Researcher
19, P. Brovka Str., 220072 Minsk
S. A. Sharko
Belarus
Sergei A. Sharko – Ph. D. (Physics and Mathematics), Senior Researcher
19, P. Brovka Str., 220072 Minsk
A. I. Serokurova
Belarus
Aleksandra I. Serokurova – Postgraduate Student, Junior Researcher
19, P. Brovka Str., 220072 Minsk
N. N. Novitskii
Belarus
Nikolay N. Novitskii – Ph. D. (Physics and Mathematics), Senior Researcher,
19, P. Brovka Str., 220072 Minsk
N. N. Poddubnaya
Belarus
Natalya N. Poddubnaya – Ph. D. (Physics and Mathematics), Senior Researcher
13, General Liudnikov Ave., 210023 Vitebsk
V. A. Ketsko
Russian Federation
Valerii A. Ketsko – D. Sc. (Chemistry), Chief Researcher
31, Leninskii Ave., 119991, Moscow
References
1. Pyatakov A. P., Zvezdin A. K. Magnetoelectric and multiferroic media. Physics-Uspekhi, 2012, vol. 55, no. 6, pp. 557– 581. https://doi.org/10.3367/UFNe.0182.201206b.0593
2. Belous A. G., V’yunov O. I. Multiferroics: synthesis, structure and properties. Ukrainskii khimicheskii zhurnal = Ukrainian Chemistry Journal, 2012, vol. 78, no. 7, pp. 41–70 (in Russian).
3. Smolenskii G. A., Chupis I. E. Ferroelectromagnets. Physics-Uspekhi, 1982, vol. 25, no. 7, pp. 475–493. https://doi.org/10.1070/PU1982v025n07ABEH004570
4. Nan Ce-Wen, Bichurin M. I., Dong Shuxiang, Viehland D., Srinivasan G. Multiferroic magnetoelectric composites: Historical perspective, status, and future directions. Journal of Applied Physics, 2008, vol. 103, iss. 3, pp. 031101-1. https://doi.org/10.1063/1.2836410
5. Dong S. X., Cheng J. R., Li J. F., Viehland D. Giant Magneto-Electric Effect in Laminate Composites. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 2003, vol. 50, pp. 1236–1239. https://doi.org/10.1080/09500830310001621605
6. Srinivasan G., Rasmussen E. T., Gallegos J., Srinivasan R., Bokhan Y.I., Laletin V. M. Novel magnetoelectric bilayer and multilayer structures of magnetostrictive and piezoelectric oxides. Physical Review B: Condensed Matter, 2001, vol. 64, 214408-1-6. https://doi.org/10.1103/PhysRevB.64.214408
7. Perov N. S. Fetisov L. Yu. Fetisov Yu. K. Resonant magnetoelectric interaction in asymmetric bimorphous ferromagnetic-ferroelectric structure. Technical Physics Letters, 2011, vol. 37, art. no. 244. https://doi.org/10.1134/S1063785011030291
8. Srinivasan G., Fetisov Y. K., Fetisov L. Y. Influence of bias electrical field on magnetoelectric interactions in ferromagnetic-piezoelectric layered structures. Applied Physics Letters, 2009, vol. 94, pp. 132507-3. https://doi.org/10.1063/1.3114406
9. Stognij A. I., Novitskii N. N., Sharko S. A., Bespalov A. V., Golikova O. L., Ketsko V. A., Fabrication of a PlaneParallel Interface in Ni/PbZr0.2Ti0.8O3 Heterostructures. Inorganic Materials, 2012, vol. 48, no. 8, pp. 832–835. https://doi.org/10.1134/s0020168512080146
10. Fetisov L. Y., Fetisov Y. K., Perov N. S., Chashin D. V. Magnetoelectric effect in amorphous FeNiSiC ferromagnet-piezoelectric planar structures. Technical Physics, 2011, vol. 56, iss. 4, pp. 485–490. https://doi.org/10.1134/s1063784211040153
11. Stognij A. I., Sharko S. A., Serokurova A. I., Trukhanov S. V., Trukhanov A. V., Panina L. V., Ketsko V. A., Dyakonov V. P., Szymczak H., Vinnik D. A., Gudkova S. A. Preparation and investigation of the magnetoelectric properties in layered cermet structures. Ceramics International, 2019, vol. 45, no.10, pp. 13030-13036. https://doi.org/10.1016/j.ceramint.2019.03.234
12. Laletin V. M., Stognii A. I., Novitskii N. N., Poddubnaya N. N. The Magnetoelectric Effect in Structures Based on Metallized Gallium Arsenide Substrates. Technical Physics Letters, 2014, vol. 40,no. 11, pp. 969–971. https://doi.org/10.1134/S1063785014110078
13. Izyumskaya N., Alivov Y.-I., Cho S.-J., Morkoç H., Lee H., and Kang Y.-S. Processing, Structure, Properties, and Applications of PZT Thin Films. Critical Reviews in Solid State and Materials Sciences, 2007, vol. 32, no. 3, pp. 111–202. https://doi.org/10.1080/10408430701707347
14. Petrov V. M., Srinivasan G., Laletin V. M., Bichurin M. I., Tuskov D. S., Poddubnaya N. N. Magnetoelectric effects in porous ferromagnetic-piezoelectric bulk composites: Experiment and theory. Physical Review B: Condensed Matter, 2007, vol. 75, pp. 174422. https://doi.org/10.1103/PhysRevB.75.174422
15. Poddubnaya N. N., Laletin V. M., Stognij A. I., Novitskii N. N. Dependence of magnetoelectric effect in layered lead zirconate-titanate/nickel heterostructures on the interface type. Functional Materials, 2010, vol. 17, no. 3, pp. 329–334.
16. Ziegler J. F., Birsack J. P., Littmark U. The Stopping and Range of Ions in Solids. New York, Pergamon Press, 1985. 485 p.
17. Stognij A. I., Novitskii N. N., Sharko S. A., Bespalov A. V., Golikova O. L., Smirnova M. N., Ketsko V. A. On the Visualization of the Magnetoelectric Coupling Region for a Thin Ferromagnetic Layer on a Ferroelectric Substrate. InorganicMaterials, 2019, vol. 55, no. 3, pp. 284–289. https://doi.org/10.1134/s0020168519030142
18. Stognij A. I., Pashkevich M. V., Novitskii N. N., Bespalov A. V. Ion-beam engineering of Co/TiO2 multilayer nanostructures. Technical Physics Letters, 2010, vol. 36, iss. 5, pp. 426–429. https://doi.org/10.1134/S1063785010050111