Preview

Proceedings of the National Academy of Sciences of Belarus. Physical-technical series

Advanced search

Matrices, based on nanostructured porous anodic alumina, for functional applications

https://doi.org/10.29235/1561-8358-2021-66-1-37-46

Abstract

Two-step electrochemical anodization was used for obtaining matrices based on porous anodic alumina (MPAA). Three series of experimental samples were made: 1 – PAAM with thickness 1.3–2.5 μm and 70 nm diameter, 2 – 70.0 μm thickness and 50–75 nm diameter and 3 – 13.5–60.0 μm thickness and 100–200 nm diameter. The pore filling of MPAA was realized using electrochemical deposition. As a result Ni nanopillars, Ni and multilayered Cu/CoNi nanowires were formed. The scanning electron microscopy, vibrating magnetometry, voltammetry techniques and four-probe method were used for experimental samples investigations. The magnetic characteristics of Ni nanowires showed that nanowires in MPAA have ferromagnetic properties, since the coercitivity riches up to 750 kOe and squareness ratio up to 0.65. The study of the electrochemical behavior of the Ti/Al2O3/Ni nanocomposite material in the potential range from –450 to +450 mV in 0.9 % NaCl aqueous solution demonstrated its high corrosion resistance properties. The correlation of the GMR of multilayered Cu/CoNi nanowires to the topological parameters of MPAA, the number of layers, the MPAA and partial layers thickness, and chemical purity has been determined. Thus, it has been demonstrated the prospects of use of matrices based on porous anodic alumina as a base material for the template synthesis of functional ferromagnetic nanomaterials for various practical applications.

About the Author

V. M. Fedosyuk
Scientific and Practical Materials Research Center of the National Academy of Sciences of Belarus
Belarus

Valery M. Fedosyuk – Corresponding Member of the National Academy of Sciences of Belarus, D. Sc. (Physics and Mathematics), General Director, Head of the Laboratory of the Magnetic Films Physics

19, P. Brovka Str., 220072, Minsk, Republic of Belarus



References

1. Ferry D. K. Nanowires in nanoelectronics. Science, 2008, vol. 319, pp. 579–580. https://doi.org/10.1126/science.1154446

2. Zhou W., Dai X., Fu T.-M., Xie C., Liu J., Lieber C. M. Long term stability of nanowire nanoelectronics in physiological environments. Nano Letters, 2014, vol. 14, pp. 1614–1619. https://doi.org/10.1021/nl500070h

3. Shimanovich D. L., Sokol V. A., Chushkova D. I. Methods of electrochemical formation of single-layer and double-layer membrane structures based on nanostructured anodic alumina Vestsi Natsyyanal’nai akademii navuk Belarusi. Seryya fizika-technichnych navuk = Proceedings of the National Academy of Sciences of Belarus. Physical-technical series, 2014, no. 2, pp. 19–23 (in Russian).

4. Zhou Z., Nonnenman S. S. Progress in nanoporous templates: beyond anodic aluminum oxide and towards functional complex materials. Nanomaterials, 2019, vol. 12, 2535. https://doi.org/10.3390/ma12162535

5. Chiolerio A., Ferrante I., Ricci A., Marasso S. L., Tiberto P., Canavese G., Ricciardi C., Allia P. Toward mechano-spintronics: Nanostructured magnetic multilayers for the realization of microcantilever sensors featuring wireless actuation for liquid environments. Journal of Intelligent Material Systems and Structures, 2012, vol. 24, iss. 18, pp. 2189–2196. https://doi.org/10.1177/1045389X12445031

6. Kaniukov E., Shumskaya A., Yakimchuk В., Kozlovskiy A., Korolkov I., Ibragimova M., Zdorovets M., Kadyrzhanov K., Rusakov V., Fadeev M. et al. FeNi nanotubes: Perspective tool for targeted delivery. Applied Nanoscience, 2019, vol. 9, iss. 5, pp. 835–844. https://doi.org/10.1007/s13204-018-0762-4

7. Sungjoon Choi, Sunwoo Lee, Chris Yeajoon Bon, KangHyuk Lee, Seong Jin Choi & Sang-Im Yoo. Novel Fabrication Method for a High-Performance Soft-Magnetic Composite Composed of Alumina-Coated Fe-Based Metal Powder. Journal of Electronic Materials, 2021, vol. 50, iss. 2, pp. 664–674. https://doi.org/10.1007/s11664-020-08607-8

8. Kozlovskiy A., Zdorovets M., Kadyrzhanov K., Korolkov I., Rusakov V., Nikolaevich L., Fesenko O., Budnyk O., Yakimchuk D., Shumskaya A., et al. FeCo nanotubes: Possible tool for targeted delivery of drugs and proteins. Applied Nanoscience, 2019, vol. 9, iss. 5, pp. 1091–1099. https://doi.org/10.1007/s13204-018-0889-3

9. Gu C., Lian J., He J., Jiang J., Jiang Q. High corrosion-resistance nanocrystalline Ni coating on AZ91D magnesium alloy. Surface and Coatings Technology, 2006, vol. 200, iss. 18–19, pp. 5413–5418. https://doi.org/10.1016/j.surfcoat.2005.07.001

10. Wang L., Zhang J., Gao Y., Xue Q., Hu L., Xu T. Grain size effect in corrosion behavior of electrodeposited nanocrystalline Ni coatings in alkaline solution. Scripta Materialia, 2006, vol. 55, iss. 7, pp. 657–660. https://doi.org/10.1016/j.scriptamat.2006.04.009

11. Benea L., Bonora P. L., Borello A., Martelli F., Wenger F., Pontiaux P., Galland J. Composite electrodeposition to obtain nanostructured coatings. Journal of The Electrochemical Society, 2001, vol. 148, no. 7, pp. C461–C465. https://doi.org/10.1149/1.1377279

12. Danişman M., Cansever N. Effect of Cr content on mechanical and electrical properties of Ni-Cr thin films. Journal of Alloys and Compounds, 2010, vol. 493, іss. 1–2, pp. 649–653. https://doi.org/10.1016/j.jallcom.2009.12.180

13. Zeng H., Skomski R., Menon L., Liu Y., Bandyopadhyay S., Sellmyer D. J. Structure and magnetic properties of ferromagnetic nanowires in self-assembled arrays. Physical Review B: Covering Condensed Matter and Materials Physics, 2002, vol. 65, iss.13, pp. 1–8. https://doi.org/10.1103/PhysRevB.65.134426

14. Yalçın O., Kartopu G., Çetin H., Demiray A. S., Kazan S. A comparison of the magnetic properties of Ni and Co nanowires deposited in different templates and on different substrates. Journal of Magnetism and Magnetic Materials, 2015, vol. 373, pp. 207–212. https://doi.org/10.1016/j.jmmm.2014.04.004

15. Lin S. W., Chang S. C., Liu R. S., Hu S. F., Jan N. T. Fabrication and magnetic properties of nickel nanowires. Journal of Magnetism and Magnetic Materials, 2004, vol. 282, pp. 28–31. https://doi.org/10.1016/j.jmmm.2004.05.023

16. Vázquez M., Pirota K., Torrejón J., Navas D., Hernández-Vélez M. Magnetic behaviour of densely packed hexagonal arrays of Ni nanowires: Influence of geometric characteristics. Journal of Magnetism and Magnetic Materials, 2005, vol. 294, pp. 174–181. https://doi.org/10.1016/j.jmmm.2005.03.032

17. Goodwin S., Peterson C., Hoh C., Bitther K. Targeting and retention of magnetic targeted carriers (MTCs) enhancing intra-arterial chemotherapy. Journal of Magnetism and Magnetic Materials, 1999, vol. 194, iss. 1–3, pp. 132–139. https://doi.org/10.1016/S0304-8853(98)00584-8

18. Sellmyer D. J., Zheng M., Skomski R. Magnetism of Fe, Co and Ni nanowires in self-assembled arrays. Journal of Physics: Condensed Matter, 2001, vol. 13, iss. 25, pp. R433–R460. https://doi.org/10.1088/0953-8984/13/25/201

19. Osmanbeyoglu H. U., Hur T. B., Kim H. K. Thin alumina nanoporous membranes for similar size biomolecule separation. Journal of Membrane Science, 2009, vol. 343, iss. 1–2, pp. 1–6. https://doi.org/10.1016/j.memsci.2009.07.027

20. Nagalakshmi R., Rajendran S., Sathiyabama О., Pandiarajan M., Christy J. L. Corrosion behaviour of biomaterials in synthetic biological solutions. European Chemical Bulletin, 2013, vol. 2, iss. 4, pp. 171–179.

21. Zheng M., Menon L., Zeng H., Liu Y., Bandyopadhyay S., Kirby R. D., Sellmyer D. J. Magnetic properties of Ni nanowires in self-assembled arrays, Physical Review B: Covering Condensed Matter and Materials Physics 2000, vol. 62, iss. 18, pp. 12282–12286. https://doi.org/10.1103/PhysRevB.62.12282

22. Thongmee S., Pang H. L., Ding J., Lin J. Y. Fabrication and magnetic properties of metallic nanowires via AAO templates. Journal of Magnetism and Magnetic Materials, 2009, vol. 321, iss. 18, pp. 2712–2716. https://doi.org/10.1016/j.jmmm.2009.03.074

23. Hwang J.-H., Dravid V. P., Teng M. H., Host J. J., Elliott B. R., Johnson D. L., Mason T. O. Magnetic properties of graphitically encapsulated nickel nanocrystals. Journal of Materials Research, 1997, vol. 12, iss. 4, pp. 1076–1082. https://doi.org/10.1557/JMR.1997.0150

24. Srinivasan V, Weidner J.M. An Electrochemical Route for Making Porous Nickel Oxide Electrochemical Capacitors. Journal of The Electrochemical Society, 1997, vol. 144, iss. 8, pp. L210–L213. https://doi.org/10.1149/1.1837859

25. Nasirpouria F., Southern P., Ghorbani M., Iraji zad A., Schwarzacher W. GMR in multilayered nanowires electrodeposited in track-etched polyester and polycarbonate membranes. Journal of Magnetism and Magnetic Materials, 2007, vol. 308, iss. 1, pp. 35–39. https://doi.org/10.1016/j.jmmm.2006.04.035

26. Piraux L., Dubois S., Duvail J.L., Ounadjela K., Fert A. Arrays of nanowires of magnetic metals and multilayers: Perpendicular GMR and magnetic properties. Journal of Magnetism and Magnetic

27. Materials, 1997, vol. 175, iss. 1, pp. 127–136. https://doi.org/10.1016/S0304-8853(97)00157-1


Review

Views: 604


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-8358 (Print)
ISSN 2524-244X (Online)