Preview

Proceedings of the National Academy of Sciences of Belarus. Physical-technical series

Advanced search

Influence of the autoirradiation on nanosized gold layers formation by the ion-beam deposition

https://doi.org/10.29235/1561-8358-2021-66-2-135-144

Abstract

2–13 nm gold films were obtained by the method of ion-beam sputtering on silicon and quartz substrates. It is shown that the use of an additional operation of deposition followed by the sputtering of a gold layer of 2–3 nm thickness makes it possible to reduce the electrical resistance and surface roughness of the metal films, in comparison with similar films obtained without its use. The results of measuring the temperature coefficient of resistance of nanosized gold films on silicon substrates allowed us to conclude that the films deposited become continuous at a thickness of 6-8 nm. The results of optical measurements of 10 nm gold films, obtained on quartz substrates, showed that the reflection coefficient of electromagnetic radiation at a wavelength of 850 nm is 2.8 % higher than the corresponding coefficient for the same films obtained without using this operation, and is 83 %. An important role in the formation of nanoscale gold layers is played by the processes of self-irradiation of the growing layer of the high-energy component of the gold atoms flux. When using an additional operation of deposition/sputtering, high-energy gold atoms are implanted into the substrate to a depth of about 2 nm. On the one hand, these atoms are point defects in the surface damaged layer of the substrate; on the other hand, they serve as additional centers of cluster formation. This ensures strong adhesion of the metal layer to the substrate and, therefore, the gold films become continuous and more homogeneous in microstructure. The method of ion-beam deposition can be successfully applied to obtain high-quality conductive optically transparent nanosized gold films.

About the Authors

E. N. Galenko
Mozyr State Pedagogical University named after I. P. Shamyakin
Belarus

Evgeniy N. Galenko – Postgraduate Student, Junior Researcher

28, Studencheskaya Str., 247760, Mozyr, Gomel Region, Republic of Belarus



S. A. Sharko
Scientific-Practical Materials Research Centre of the National Academy of Science of Belarus
Belarus

Sergei A. Sharko – Ph. D. (Physics and Mathematics), Senior Researcher

19, P. Brovka Str., 220072, Minsk, Republic of Belarus



N. N. Novitskii
Scientific-Practical Materials Research Centre of the National Academy of Science of Belarus
Belarus

Nikolay N. Novitskii – Ph. D. (Physics and Mathematics), Senior Researcher

19, P. Brovka Str., 220072 Minsk, Republic of Belarus



O. I. Ivash
Scientific-Practical Materials Research Centre of the National Academy of Science of Belarus
Belarus

Olga I. Ivash – Junior Researcher

19, P. Brovka Str., 220072 Minsk, Republic of Belarus



V. A. Ketsko
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
Russian Federation

Valerii A. Ketsko – D. Sc. (Chemistry), Chief Researcher

31, Leninskii Ave., 119991, Moscow, Russian Federation



References

1. Muslimov A. E., Butashin A. V., Kanevsky V. M., Nabatov B. V., Konovko A. A., Belov I. V., Gizetdinov R. M., Andreev A. V. Photonics of 2D nanoscale gold layers on a sapphire surface. Crystallography Reports, 2017, vol. 62, no. 2, pp. 300‒308. https://doi.org/10.1134/s1063774517020195

2. Naydenov P. N., Chekhov A. L., Golikova O. L., Bespalov A. V., Geraskin A. A., Savin S. S., Murzina T. V. Two-lattice magnetoplasmonic structures based on BIG and perforated gold films. Physics of the Solid State, 2019, vol. 61, no. 9, pp. 1658‒1664. https://doi.org/10.1134/s106378341909018x

3. Stognij A. I., Novitsky N. N., Tushina S. D., Kalinnikov S. V. Preparation of ultrathin gold films by oxygen-ion sputtering and their optical properties. Technical Physics, 2003, vol. 43, no. 6, pp. 745–748. https://doi.org/10.1134/1.1583829

4. Yakubovsky D. I., Arsenin A. V., Stebunov Yu. V., Fedyanin D. Yu., Volkov V. S. Optical constants and structural properties of thin gold films. Optics Express, 2017, vol. 25, no. 21, pp. 25574–25587. https://doi.org/10.1364/OE.25.025574

5. Bochenkov V., Baumberg J., Noginov M., Benz F., Aldewachi H., Schmid S., Podolskiy V., Aizpurua J., Lin K., Ebbesen T., Kornyshev A. A., Hutchison J., Matczyszyn K., Kumar S., Nijs B. de, Rodríguez Fortuño F., Hugall J. T., de Roque P., Hulst N. van, Kotni S., Martin O., García de Abajo F. J., Flatté M., Mount A., Moskovits M., Ginzburg P., Zueco D., Zayats A., Oh S.-H., Chen Y., Richards D., Belardini A., Narang P. Applications of plasmonics: general discussion. Faraday Discuss, 2015, vol. 178,pp. 435–466. https://doi.org/10.1039/c5fd90025e

6. Fang Y., Sun M. Nanoplasmonic waveguides: towards applications in integrated nanophotonic circuits. Light: Science & Applications, 2015, vol. 4 (6), p. 294. https://doi.org/10.1038/LSA.2015.67

7. Gwo S., Shih C.-K. Semiconductor plasmonicnanolasers: current status and perspective. Reports on Progress in Physics, 2016, vol. 79 (8), p. 086501. https://doi.org/10.1109/NUSOD.2010.5595670

8. Palomba S., Zhang S., Park Y., Bartal G., Yin X., Zhang X. Optical negative refraction by four-wave mixing in thin metallic nanostructures. Nature Materials, 2011, vol. 11 (1), pp. 34–38. https://doi.org/10.1038/nmat3148

9. Galfsky T., Gu J., Narimanov E. E., Menon V. M. Photonic hypercrystals for control of light-matter interactions. Proceedings of the National Academy of Sciences, 2017, vol. 114, no. 20, pp. 5125–5129. https://doi.org/10.1073/pnas.1702683114

10. Bundesmann C., Neumann H. Tutorial: The systematics of ion beam sputtering for deposition of thin films with tailored properties. Journal of Applied Physics, 2018, vol. 124, p. 231102-1-16. https://doi.org/10.1063/1.5054046

11. Stognij A. I., Novitsky N. N., Stukalov O. M. Nanoscale ion beam polishing of optical materials. Technical Physics Letters, 2002, vol. 28, no. 1, pp. 17–20. https://doi.org/10.1134/1.1448630

12. Stognij A. I., Novitskii N. N., Poddubnaya N. N., Sharko S. A., Ketsko V. A., Mikhailov V., Dyakonov V., Szymczak H. Interface magnetoelectric effect in the layered heterostructures with Co layers on the polished and ion-beam planarized ceramic PZT substrates. European Physical Journal Applied Physics, 2015, vol. 69, 11301-p1 (5 pages). https://doi.org/10.1051/epjap/2014140402

13. Stognij A. I., Novitskii N. N., Trukhanov S. V., Trukhanov A. V., Panina L. V., Sharko S. A., Serokurova A. I., Poddubnaya N. N., Ketsko V. A., Dyakonov V. P., Szymczak H., Singh C., Yang Y. Interface magnetoelectric effect in elastically linked Co/PZT/Co layered structures. Journal of Magnetism and Magnetic Materials, 2019, vol. 485, pp. 291–296. https://doi.org/10.1016/j.jmmm.2019.04.006

14. Stognij A. I., Koryakin S. V., Novitsky N. N. Cobalt redistribution over the surface of inhomogeneous cobalt-copper alloy films. Technical Physics, 2003, vol. 48. no. 4, pp. 496–502. https://doi.org/10.1134/1.1568493

15. Stognij A. I., Pashkevich M. V., Novitskii N. N., Gribkov B. A., Mironov V. L., Ketsko V. A., Fettar F., Garad H. Controlled Growth of Co Nanofilms on Si(100) by Ion-Beam Sputtering. Inorganic Materials, 2011, vol. 47, no. 8, pp. 869–875. https://doi.org/10.1134/S0020168511080206

16. Stognij A. I., Meshcheryakov V. F., Novitsky N. N., Fettar F., Pashkevich M. V. Magnetic properties of cobalt films at the initial stage of ion-beam deposition. Technical Physics Letters, 2009, vol. 35, no. 6, pp. 528–531. https://doi.org/10.1134/s1063785009060145

17. Stognij A. I., Novitsky N. N., Stukalov O. M., Demchenko A. I., Khitko V. I. On the inhomogeneous nature of the initial stage of ion-beam deposition of ultrathin gold films. Technical Physics Letters, 2004, vol. 30, no. 3, pp. 256–258.https://doi.org/10.1134/1.1707185

18. Burlakov R. B., Kovivchak V. S. On the question of measuring the resistivity of conducting layers by the four-probe method. Vestnik Omskogo universiteta= Herald of Omsk University, 2014, no. 2, pp. 59–68 (in Russian).

19. Emsley J. The Elements. Oxford University Press, 1998. 300 p.

20. Haas G., ThunR. E. (eds.) Physics of Thin Films. Vol. 2. Advances in Research and Development. New York; London, Academic Press, 1964. 396 p.

21. Chopra K. L., Das S. R. Thin Film Solar Cells. Springer Science – Business Media New York, 1983. 615 p. https://doi.org/10.1007/978-1-4899-0418-8

22. Gall D. Electron mean free path in elemental metals. Journal of Applied Physics, 2016, vol. 119, p. 085101-5. https://doi.org/10.1063/1.4942216

23. Thompson M.V. The velocity distribution of sputtered atoms. Nuclear Instruments and Methods in Physics Research, B. 1986, vol. 18, pp. 411–429. https://doi.org/10.1016/S0168-583X(86)80067-2

24. Falcone G. Sputtering theory. La Rivista del Nuovo Cimento, 1990, vol. 13, no. 1, pp. 1‒52. https://doi.org/10.1007/bf02742981

25. Kittel Ch. Introduction to Solid State Physics. John Wiley and Songs Inc., 1956. 680 p.


Review

Views: 494


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-8358 (Print)
ISSN 2524-244X (Online)