Износостойкость наноструктурированных металлополимерных самосмазывающихся порошковых композитов
https://doi.org/10.29235/1561-8358-2021-66-2-154-160
Аннотация
Проведенные микроструктурные исследования с использованием методов сканирующей электронной микроскопии и триботехнические испытания с применением стандартных методов изучения характеристик трения и изнашивания позволили установить механизм повышения износостойкости наноструктурированных металло- полимерных самосмазывающихся композиционных материалов. Показано, что политетрафторэтилен, содержащийся в порошковой медной матрице, позволяет на поверхности трения сформировать полимерные слои, способствующие снижению коэффициента трения и повышению нагрузочно-скоростных режимов эксплуатации узла трения, а при разрушении данных слоев в процессе трения наноструктуры углерода, распределенные в объеме медной матрицы, препятствуют развитию процессов схватывания, возникающих при взаимодействии микронеровностей на поверхностях материала и контртела. Установлено, что при значениях давления в трибоконтакте выше 1,5 МПа происходит вытеснение полимерного наполнителя из зоны трения и практически полное вдавливание наноструктур углерода в открытые участки поверхности медной матрицы композита, в результате чего частицы наноструктурного углеродного наполнителя не имеют возможности перемещаться по поверхности трения и не препятствуют развитию процессов схватывания поверхностей композиционного материала и контртела. Повышение скорости скольжения выше 1,5 м/с сопровождается ростом температуры в трибоконтакте, что ведет к деструкции полимерного наполнителя и потере им свойств самосмазывания. Также интенсивное тепловыделение в трибоконтакте сопровождается образованием и накоплением структурных дефектов поверхностных слоев композиционного материала с сопутствующим снижением его прочностных свойств, повышением коэффициента трения и интенсификацией процесса изнашивания контактирующих поверхностей. При этом скорости скольжения выше 1,5 м/с способствуют достаточно быстрому выносу наноструктур углерода из зоны трения и, соответственно, ухудшению триботехнических характеристик композиционного материала. Полученные результаты исследований могут быть использованы в машиностроении, на транспорте и в энергетике.
Об авторах
В. Н. ПасовецБеларусь
Пасовец Владимир Николаевич – кандидат технических наук, доцент; докторант
ул. Машиностроителей, 25, 220118, Минск, Республика Беларусь
ул. Платонова, 41, 220005, Минск, Республика Беларусь
В. А. Ковтун
Беларусь
Ковтун Вадим Анатольевич – доктор технических наук, профессор
пр. Речицкий, 35, 246021, Гомель, Республика Беларусь
Ю. М. Плескачевский
Беларусь
Плескачевский Юрий Михайлович – член-корреспондент Национальной академии наук Беларуси, доктор технических наук, профессор, заведующий кафедрой «Микро- и нанотехника»
ул. Я. Коласа, 22, 220013, Минск, Республика Беларусь
Список литературы
1. Blau, P. J. Friction Science and Technology from Concepts to Applications / P. J. Blau. – Boca Raton: CRC Press, 2019. – 436 p.
2. Madanhire, I. Mitigating Environmental Impact of Petroleum Lubricants / I. Madanhire, Ch. Mbohwa. – Geneva: Springer International Publishing AG Switzerland, 2016. – 238 p. https://doi.org/10.1007/978-3-319-31358-0
3. Роман, О. В. История порошковой металлургии Беларуси за 50 лет / О. В. Роман, П. А. Витязь, А. Ф. Ильющенко // 50 лет порошковой металлургии Беларуси: история, достижения, перспективы / редкол.: А. Ф. Ильющенко [и др.]. – Минск: ГНПО ПМ, 2010. – Гл. 1. – С. 5–33.
4. Порошковые нанокомпозиты триботехнического назначения / В. Н. Пасовец [и др.]. – Минск: КИИ, 2016. – 295 с.
5. Материалы и технологии порошковой металлургии в компонентах авиационной и космической техники / А. Ф. Ильющенко [и др.] // Вес. Нац. акад. навук Беларусі. Сер. фіз.-тэхн. навук. – 2020. – Т. 65, № 3. – С. 272–284. https://doi.org/10.29235/1561-8358-2020-65-3-272-284
6. Ильющенко, А.Ф. Введение наноразмерных добавок при модифицировании энергонасыщенного гетерогенного композиционного материала / А. Ф. Ильющенко, Е. Е. Петюшик, О. К. Кривонос // Вес. Нац. акад. навук Беларусі. Сер. фіз.-тэхн. навук. – 2019. – Т. 64, № 2. – С. 135–142. https://doi.org/10.29235/1561-8358-2019-64-2-135-142
7. Крагельский, И. В. Трение и износ / И. В. Крагельский. – М.: Машиностроение, 1968. – 430 с.
8. Семёнов, А. П. Схватывание металлов / А. П. Семёнов. – М.: Машгиз, 1958. – 280 с.
9. Мышкин, Н. К. Трение, смазка, износ: физические основы и технические приложения трибологии / Н. К. Мышкин, М. И. Петроковец. – М.: Физматлит, 2007. – 368 с.
10. Гаркунов, Д. Н. Триботехника / Д. Н. Гаркунов. – М.: Машиностроение, 1985. – 424 с.
11. Основы трибологии (трение, износ, смазка) / под ред. А. В. Чичинадзе. – М.: Машиностроение, 2001. – 664 с.
12. Мышкин, Н. К. Трибология полимеров: адгезия, трение, изнашивание и фрикционный перенос / Н. К. Мышкин, М. И. Петроковец, А. В. Ковалев // Трение и износ. – 2006. – Т. 27, № 4. – С. 429–443.
13. Kovtun, V. Tribological properties and microstructure of the metal-polymer composite thin layer deposited on a copper plate by electrocontact sintering / V. Kovtun, V. Pasovets, T. Pieczonka // Arch. Metall. Mater. – 2017. – Vol. 62, № 1. – P. 51–58. https://doi.org/10.1515/amm-2017-0007
14. Preparation and properties of 3D interconnected CNTs/Cu composites / Sh. Chen [et al.] // Nanotechnol. Rev. – 2020. – Vol. 9, № 1. – P. 146–154. https://doi.org/10.1515/ntrev-2020-0013
15. Алеутдинова, М. И. Характеристики сухого скользящего электроконтакта металлов в условиях катастрофического изнашивания / М. И. Алеутдинова, В. В. Фадин // Известия высших учебных заведений. Черная металлургия. – 2019. – Т. 62, № 2. – С. 103–108. https://doi.org/10.17073/0368-0797-2019-2-103-108