Preview

Известия Национальной академии наук Беларуси. Серия физико-технических наук

Пашыраны пошук

Методы определения газодинамических характеристик реактивного сопла аэродинамического объекта

https://doi.org/10.29235/1561-8358-2021-66-3-320-328

Анатацыя

Эффективность работы аэродинамических объектов с реактивными двигателями обусловлена множеством факторов, среди которых огромное значение имеют конструктивные параметры сопла и их взаимосвязь с общей конструкцией двигателя и источником энергии, определяющим состав и свойства рабочего тела двигателя. В связи с этим существует необходимость выполнения расчетов газодинамических характеристик и геометрических параметров сопла на различных стадиях проектирования и испытаний реактивных двигателей. Причем любое изменение в конструкции и (или) типе используемых материалов требует индивидуального подхода к расчету. В работе предпринята попытка оценить соответствие различных методик расчетов для конкретной системы «высокоэнергетический материал – рабочее тело – сопло» экспериментально установленным параметрам системы. Из многообразия существующих подходов к моделированию процессов выделяют относительно несложные расчеты с большим количеством допущений и детальное моделирование, учитывающее максимально возможное количество факторов. Выполненные расчеты с использованием одномерной теории сопла и метода моделирования газовой динамики продемонстрировали наличие различий в полученных результатах в диапазоне 6 % по разным параметрам. При этом отмечено более близкое соответствие результатов метода моделирования газовой динамики экспериментально установленным параметрам. Вместе с тем метод моделирования газовой динамики реактивного сопла двигателя является более трудоемким и затратным для проведения расчетов по сравнению с применением одномерной теории. Поэтому с практической точки зрения для проведения конструктивного расчета двигателя целесообразно использовать одномерную теорию сопла, а проверочный расчет осуществлять средствами моделирования.

Аб аўтарах

А. Ильющенко
Государственное научно-производственное объединение порошковой металлургии
Беларусь


О. Кривонос
Государственное научно-производственное объединение порошковой металлургии
Беларусь


А. Чорный
Институт тепло- и массообмена имени А. В. Лыкова Национальной академии наук Беларуси
Беларусь


Е. Петюшик
Государственное научно-производственное объединение порошковой металлургии
Беларусь


Спіс літаратуры

1. Yumusak, M. Analysis and design optimization of solid rocket motors in viscous flows / M. Yumusak // Computers & Fluids. – 2013. – № 75. – P. 22–34. https://doi.org/10.1016/j.compfluid.2013.01.011

2. Биматов, В. И. Внешняя баллистика: учеб. пособие / В. И. Биматов, В. Д. Мерзляков, В. П. Степанов. – Томск: Изд-во Томского ун-та, 1993. – Ч. 1. – 168 с.

3. Studies on the influence of testing parameters on dynamic and transient properties of composite solid rocket propellants using a dynamic mechanical analyzer / V. Wani [et al.] // J. Aerosp. Technol. Manag. – 2012. – Vol. 4, iss. 4. – P. 443–452. https://doi.org/10.5028/jatm.2012.04044012

4. Nozzle flow separation fluid-thermal-structure load transfer coupled analysis and test research / H. Hai-Feng [et al.] // J. Astronautics. – 2011. – Vol. 32, № 7. – P. 1534–1542.

5. Experimental and numerical study of jet mixing from a shock-containing nozzle / Q. Xiao [et al.] // Journal of Propulsion and Power. – 2009. – Vol. 25, № 3. – P. 688–696. http://doi.org/10.2514/1.37022

6. Silton, S. Navier-stokes computations for a spinning projectile from subsonic to supersonic speeds / S. Silton // J. Spacecraft Rockets. – 2005. – Vol. 42, № 2. – P. 223–231. https://doi.org/10.2514/1.4175

7. Кривонос, О. К. Методология разработки энергонасыщенного гетерогенного композиционного материала / О. К. Кривонос, А. Ф. Ильющенко, Е. Е. Петюшик // Порошковая металлургия: респ. межвед. сб. науч. трудов / редкол.: А. Ф. Ильющенко [и др.]. – Минск: НАН Беларуси, 2020. – Вып. 43. – С. 122–129.

8. Разработка математической модели структурообразования энергонасыщенного композиционного материала / О. К. Кривонос [и др.] // Полимерные материалы и технологии. – 2021. – Т. 7, № 1. – С. 23–32. https://doi.org/10.32864/polymmattech-2020-6-4-23-32

9. Алемасов, В. Е. Теория ракетных двигателей: учеб. для студентов высш. техн. учеб. заведений / В. Е. Алемасов, А. Ф. Дрегалин, А. П. Тишин; под ред. В. П. Глушко. – М.: Машиностроение, 1989. – 464 с.

10. Павлюк, Ю. C. Баллистическое проектирование ракет: учеб. пособие для вузов / Ю. C. Павлюк. – Челябинск: Изд-во ЧГТУ, 1996. – 92 с.

11. Абугов, Д. И. Теория и расчет ракетных двигателей твердого топлива: учеб. для машиностроительных вузов / Д. И. Абугов, В. М. Бобылев. – М.: Машиностроение, 1987. – 272 с.

12. Роль компьютерного моделирования и физического эксперимента в исследованиях аэрогазодинамики ракетно-космических систем в процессе проектирования / Н. П. Алабова [и др.] // Космическая техника и технологии. – 2014. – № 3 (6). – С. 14–21.

13. Гарбарук, А. В. Моделирование турбулентности в расчетах сложных течений / А. В. Гарбарук, М. Х. Стрелец, М. Л. Шур. – СПб.: Изд-во Политехн. ун-та, 2012. – 88 с.

14. Ильющенко, А. Ф. Способ определения баллистического коэффициента оперенного аэродинамического объекта / А. Ф. Ильющенко, О. К. Кривонос, А. Д. Чорный // Проблемы физики, математики и техники. – 2021. – № 2 (47). – С. 90–97.


##reviewer.review.form##

Праглядаў: 489


Creative Commons License
Кантэнт даступны пад ліцэнзіяй Creative Commons Attribution 3.0 License.


ISSN 1561-8358 (Print)
ISSN 2524-244X (Online)