The error of transferring the size of a unit of length – a meter in the nanometer range using the nanomeasuring machine
https://doi.org/10.29235/1561-8358-2022-67-1-86-93
Abstract
The paper describes the principle of measuring linear dimensions using a nano-measuring machine (NMM), which implements the method of measuring three coordinate axes in the range of 25X25X5 mm3. Sources of non-excluded systematic measurement errors are identified, which are conventionally divided into factors associated with the method of measuring length using an interferometer and factors determined by the design and technological features of the nano-measuring machine. Statistical estimates of the measurement result have been determined and the error in transferring the size – meter length in the nanometer range of measurements has been calculated. The results obtained assert that the nano-measuring machine is a unique tool that allows one to carry out measurements of millimeter dimensions with nanometer accuracy. The results obtained can be used for metrological assessment of the step height and step width, when calibrating measuring instruments in the nanometer range, roughness measures in a large range when calibrating profilometers and contourographs, as well as templates and micrometer objects for measuring high-precision microscopes.
About the Authors
A. A. BagdunBelarus
Alexandr A. Bagdun – Leading Metrology Engineer – Researcher of the Production and Research Department for Measuring Geometric Quantities
Starovilensky Trakt, 93, 220053, Minsk
V. L. Solomakho
Belarus
Vladimir L. Solomakho – D. Sc. (Engineering), Professor
65, Nezavisimosti Ave., 220013, Minsk
References
1. Tortonese M., Prochazka J., Konicek P., Schneir J., Smith I. R. 100-nm-pitch standard characterization for metrology applications. SPIE’s 27th Annual International Symposium on Microlithography, 2002, Santa Clara, California, Proceedings Volume 4689, Metrology, Inspection, and Process Control for Microlithography XVI. Santa Clara, 2002. https://doi.org/10.1117/12.473495
2. Bienias M., Gao S., Hasche, Seemann R., Thiele K. A metrological scanning force microscope used for coating thickness and other topographical measurements. Applied Physics A: Materials Science & Processing, 1998, vol. 66, no. 7, pp. S837–S842. https://doi.org/10.1007/s003390051252
3. Dai G., Pohlenz F., Danzebrink H.-U., Xu M., Hasche K., Wilkening G. Metrological large range scanning probe microscope. Review of Scientific Instruments, 2004, vol. 75, no. 4, pp. 962–969. https://doi.org/10.1063/1.1651638
4. Dixson R., Köning R., Fu J., Vorburger T., Renegar B. Accurate dimensional metrology with atomic force microscopy. Metrology, Inspection, and Process Control for Microlithography XIV, Proc. SPIE, 2000, vol. 3998, pp. 362–368. https://doi.org/10.1117/12.386492
5. Picotto G., Pisani M. A sample scanning system with nanometric accuracy for quantitative SPM measurements. Ultramicroscopy, 2001, vol. 86, pp. 247–254. https://doi.org/10.1016/S0304-3991(00)00112-1
6. Haycocks J.A., Jackson K. Traceable calibration of transfer standards for scanning probe microscopy. Precision Engineering, 2005, vol. 29, pp. 168–175. https://doi.org/10.1016/j.precisioneng.2004.06.002
7. Meli F., Thalmann R. Long-range AFM profiler used for accurate pitch measurements. Measurement Science and Technology, 1998, vol. 9, pp. 1087–1092. https://doi.org/10.1088/0957-0233/9/7/014
8. Haessler-Grohne W., Bosse H. An electron optical metrology system for pattern placement measurements. Measurement Science and Technology, 1998, vol. 9, pp. 1120–1128. https://doi.org/10.1088/0957-0233/9/7/020
9. Leach R.K., Haycocks J.A., Jackson K., Lewis A., Oldfield S. J., Yacoot A. Advances in traceable nanometrology at the National Physical Laboratory. Nanotechnology, 2001, vol. 12, no. 1, R1. https://doi.org/10.1088/0957-4484/12/1/201
10. Garnæs J., Kofod N., Kühle A., Nielsen C., Dirscherl K., Blunt L. Calibration of step heights and roughness measurements with atomic force microscopes. Precision Engineering, 2003, vol. 27, pp. 91–98. https://doi.org/10.1016/S0141-6359(02)00184-8
11. Misumi I., Gonda S., Kurosawa T., Takamasu K. Uncertainty in pitch measurements of one-dimensional grating standards using a nanometrological atomic force microscope. Measurement Science and Technology, 2003, vol. 14, pp. 463– 471. https://doi.org/10.1088/0957-0233/14/4/309
12. Misumi I., Gonda S., Kurosawa T., Tanimura Y., Ochiai N., Kitta J.-i., Kubota F., Yamada M., Fujiwara Y., Nakayama Y., Takamasu K. Submicrometre-pitch intercomparison between optical diffraction, scanning electron microscope and atomic force microscope. Measurement Science and Technology, 2003, vol. 14, pp. 2065–2074. https://doi.org/10.1088/0957-0233/14/12/004
13. Haessler-Grohne W., Dziomba T., Frase C. G., Bosse H., Prochazka J. Characterization of a 100-nm 1D pitch standard by metrological SEM and SFM. SPIE Advanced Lithography, 2004. https://doi.org/10.1117/12.536285
14. Jørgensen J.F., Jensen C.P., Garnaes J. Lateral metrology using scanning probe microscopes, 2D pitch standards and image processing. Applied Physics A: Materials Science & Processing, 1998, vol. 66, pp. S847–S852. https://doi.org/10.1007/S003390051254
15. Leach R. Abbe Error / Offset. Laperrière L., Reinhart G. (eds.). CIRP Encyclopedia of Production Engineering. Springer, 2014. https://doi.org/10.1007/978-3-642-35950-7_16793-1
16. Decker J.E., Pekelsky J.R. Uncertainty evaluation for the measurement of gauge blocks by optical interferometry. Metrologia, 1997, vol. 34, pp. 479–493. https://doi.org/10.1088/0026-1394/34/6/4
17. Dai G., Pohlenz F., Dziomba T., Xu M., Diener A., Koenders L., Danzebrink H.-U. Accurate and traceable calibration of two-dimensional gratings. Measurement Science and Technology, 2007, vol. 18, pp. 415–421. https://doi.org/10.1088/0957-0233/18/2/S13
18. Edĺen B. The Refractive Index of Air. Metrologia, 1966, vol. 2, pp. 71–80. https://doi.org/10.1088/0026-1394/2/2/002
19. Jones F.E. The Refractivity of Air. Journal of Research of the National Bureau of Standards, 1981, vol. 86, no. 1, pp. 27–32. https://doi.org/10.6028/JRES.086.002
20. Schmidt I. Beiträge zur Verringerung der Positionierunsicherheit in der Nanopositionier und Nanomessmaschine. Ilmenau University of Technology, 2009. 25 p.