Preview

Proceedings of the National Academy of Sciences of Belarus. Physical-technical series

Advanced search

Thermal conductivity of wurtzite gallium nitride

https://doi.org/10.29235/1561-8358-2022-67-3-285-297

Abstract

This paper reviews the theoretical and experimental works concerning one of the most important parameters of wurtzite gallium nitride – thermal conductivity. Since the heat in gallium nitride is transported almost exclusively by phonons, its thermal conductivity has a temperature behavior typical of most nonmetallic crystals: the thermal conductivity increases proportionally to the third power of temperature at lower temperatures, reaches its maximum at approximately 1/20 of the Debye temperature and decreases proportionally to temperature at higher temperatures. It is shown that the thermal conductivity of gallium nitride (depending on fabrication process, crystallographic direction, concentration of impurity and other defects, isotopical purity) varies significantly, emphasizing the importance of determining this parameter for the samples that closely resemble those being used in specific applications. For isotopically pure undoped wurtzite gallium nitride, the thermal conductivity at room temperature has been estimated as high as 5.4 W/(cm·K). The maximum room temperature value measured for bulkshaped samples of single crystal gallium nitride has been 2.79 W/(cm·K).

About the Authors

V. S. Volcheck
Belarusian State University of Informatics and Radioelectronics
Belarus

Vladislav S. Volcheck, Researcher

6, P. Brovka Str., 220013, Minsk



M. S. Baranava
Belarusian State University of Informatics and Radioelectronics
Belarus

Maryia S. Baranava, Researcher

6, P. Brovka Str., 220013, Minsk



V. R. Stempitsky
Belarusian State University of Informatics and Radioelectronics
Belarus

Viktor R. Stempitsky, Ph. D. (Engineering), Associate 
Professor, Vice-Rector for Research and Development, Head 
of Research and Development Department,

6, P. Brovka Str., 220013, Minsk



References

1. Quay R. Gallium Nitride Electronics. Berlin; Heidelberg, Springer, 2008. 470 p.

2. Roccaforte F., Leszczynski M. (eds.). Nitride Semiconductor Technology: Power Electronics and Optoelectronic Devices. Weinheim, Wiley-VCH, 2020. 464 p. https://doi.org/10.1002/9783527825264

3. Bernardini F., Fiorentini V., Vanderbilt D. Spontaneous polarization and piezoelectric constants of III-V nitrides. Physical Review B, 1997, vol. 56, no. 16, pp. 24–27. https://doi.org/10.1103/PhysRevB.56.R10024

4. Yan Z., Liu G., Khan J. M., Balandin A.A. Graphene quilts for thermal management of high-power GaN transistors. Nature Communications, 2012, vol. 3, 827. https://doi.org/10.1038/ncomms1828

5. Volcheck V. S., Lovshenko I. Yu., Shandarovich V. T., Dao D. H. Gallium nitride high electron mobility transistor with an effective graphene-based heat removal system. Doklady BGUIR, 2020, vol. 18, no. 3, pp. 72–80 (in Russian). https://doi. org/10.35596/1729-7648-2020-18-3-72-80

6. Wachutka G.K. Rigorous thermodynamic treatment of heat generation and conduction in semiconductor device modeling. IEEE Transactions on Computer-Aided Design, 1990, vol. 9, no. 11, pp. 1141–1149. https://doi.org/10.1109/43.62751

7. Asif Khan M., Yang J.W., Knap W., Frayssinet E., Hu X., Simin G., Prystawko P., Leszczynski M., Grzegory I., Porowski S., Gaska R., Shur M.S., Beaumont B., Teisseire M., Neu G. GaN-AlGaN heterostructure field-effect transistors over bulk GaN substrates. Applied Physics Letters, 2000, vol. 76, no. 25, pp. 3807–3809. https://doi.org/10.1063/1.126788

8. Irekti M.-R., Lesecq M., Defrance N., Okada E., Frayssinet E., Cordier Y., Tartarin J.-G., De-Jaeger J.-C. 2 W/mm power density of an AlGaN/GaN HEMT grown on free-standing GaN substrate at 40 GHz. Semiconductor Science and Technology, 2019, vol. 34, no. 12, 12LT01. https://doi.org/10.1088/1361-6641/ab4e74

9. Dong Y., Xie Z., Chen D., Lu H., Zhang R., Zheng Y. Effects of dissipative substrate on the performance of enhancement mode AlInN/GaN HEMTs. International Journal of Numerical Modeling: Electronic Networks, Devices and Fields, 2019, vol. 32, no. 1, e2482. https://doi.org/10.1002/jnm.2482

10. Zou J., Kotchetkov D., Balandin A. A., Florescu D. I., Pollak F.H. Thermal conductivity of GaN films: Effects of impurities and dislocations. Journal of Applied Physics, 2002, vol. 92, no. 5, pp. 2534–2539. https://doi.org/10.1063/1.1497704

11. Bi W., Kuo H.-C., Ku P.-C., Chen B. (eds.). Handbook of GaN Semiconductor Materials and Devices. New York, CRC Press, 2018. 708 p. https://doi.org/10.1201/9781315152011

12. Vandersande J. W., Wood C. The thermal conductivity of insulators and semiconductors. Contemporary Physics, 1986, vol. 27, no. 2, pp. 117–144. https://doi.org/10.1080/00107518608211003

13. Slack G.A. Nonmetallic crystals with high thermal conductivity. Journal of Physics and Chemistry of Solids, 1973, vol. 34, no. 2, pp. 321–335. https://doi.org/10.1016/0022-3697(73)90092-9

14. Morelli D. T., Heremans J. P., Slack G.A. Estimation of the isotope effect on the lattice thermal conductivity of group IV and group III-V semiconductors. Physical Review B, 2002, vol. 66, no. 19, 195304. https://doi.org/10.1103/ PhysRevB.66.195304

15. Florescu D. I., Asnin V. M., Pollak F. H., Molnar R. J., Wood C.E. C. High spatial resolution thermal conductivity and Raman spectroscopy investigation of hydride vapor phase epitaxy grown n-GaN/sapphire (0001): Doping dependence. Journal of Applied Physics, 2000, vol. 88, no. 6, pp. 3295–3300. https://doi.org/10.1063/1.1289072

16. Witek A. Some aspects of thermal conductivity of isotopically pure diamond – A comparison with nitrides. Diamond and Related Materials, 1998, vol. 7, no. 7, pp. 962–964. https://doi.org/10.1016/S0925-9635(97)00336-1

17. Dugdale J. S., MacDonald D.K. C. Lattice thermal conductivity. Physical Review, 1955, vol. 98, no. 6, pp. 1751–1752. https://doi.org/10.1103/PhysRev.98.1751

18. Callaway J. Model for lattice thermal conductivity at low temperatures. Physical Review, 1959, vol. 113, no. 4, pp. 1046–1051. https://doi.org/10.1103/PhysRev.113.1046

19. Ma J., Li W., Luo X. Examining the Callaway model for lattice thermal conductivity. Physical Review B, 2014, vol. 90, no. 3, 035203. https://doi.org/10.1103/PhysRevB.90.035203

20. Kotchetkov D., Zou J., Balandin A. A., Florescu D. I., Pollak F.H. Effect of dislocations on thermal conductivity of GaN layers. Applied Physics Letters, 2001, vol. 79, no. 26, pp. 4316–4318. https://doi.org/10.1063/1.1427153

21. Liu W., Balandin A.A. Thermal conduction in AlxG1-xN alloys and thin films. Journal of Applied Physics, 2005, vol. 97, no. 7, 073710. https://doi.org/10.1063/1.1868876

22. Lindsay L., Broido D.A., Reinecke T.L. Thermal conductivity and large isotope effect in GaN from first principles. Physical Review Letters, 2012, vol. 109, no. 9, 095901. https://doi.org/10.1103/PhysRevLett.109.095901

23. Broido D. A., Malorny M., Birner G., Mingo N., Stewart D.A. Intrinsic lattice thermal conductivity of semiconductors from first principles. Applied Physics Letters, 2007, vol. 91, no. 23, 231922. https://doi.org/10.1063/1.2822891

24. Slack G. A., Schowalter L. J., Morelli D., Freitas Jr. J.A. Some effects of oxygen impurities on AlN and GaN. Journal of Crystal Growth, 2002, vol. 246, no. 3–4, pp. 287–298. https://doi.org/10.1016/S0022-0248 %2802 %2901753-0

25. Jezowski A., Danilchenko B. A., Bockowski M., Grzegory I., Krukowski S., Suski T., Paszkiewicz T. Thermal conductivity of GaN crystals in 4.2–300 K range. Solid State Communications, 2003, vol. 128, no. 2–3, pp. 69–73. https://doi. org/10.1016/S0038-1098(03)00629-X

26. Ju W, Zhou Z., Wei Z. Anisotropic thermal transport property of defect-free GaN. AIP Advances, 2016, vol. 6, no. 6, 065328. https://doi.org/10.1063/1.4955185

27. Wu R., Hu R., Luo X. First-principles-based full-dispersion Monte Carlo simulation of the anisotropic phonon transport in the wurtzite GaN thin film. Journal of Applied Physics, 2016, vol. 119, no. 14, 145706. https://doi.org/10.1063/1.4945776

28. Qin Z., Qin G., Zuo X., Xiong Z., Hu M. Orbitally driven low thermal conductivity of monolayer gallium nitride (GaN) with planar honeycomb structure: A comparative study. Nanoscale, 2017, vol. 9, pp. 4295–4309. https://doi.org/10.1039/ C7NR01271C

29. Jiang Y., Cai S., Tao Y., Wei Z., Bi K., Chen Y. Phonon transport properties of bulk and monolayer GaN from first-principles calculations. Computational Materials Science, 2017, vol. 138, pp. 419–425. https://doi.org/10.1016/j.commatsci.2017.07.012

30. Li W., Carrete J., Katcho N.A., Mingo N. ShengBTE: A solver of the Boltzmann transport equation for phonons. Computer Physics Communications, 2014, vol. 185, no. 6, pp. 1747–1758. https://doi.org/10.1016/j.cpc.2014.02.015

31. Garg J., Luo T., Chen G. Spectral concentration of thermal conductivity in GaN – A first-principles study. Applied Physics Letters, 2018, vol. 112, no. 25, 252101. https://doi.org/10.1063/1.5026903

32. Behler J., Parrinello M. Generalized neural-network representation of high-dimensional potential-energy surfaces. Physical Review Letters, 2007, vol. 98, no. 14, 146401. https://doi.org/10.1103/PhysRevLett.98.146401

33. Minamitani E., Ogura M., Watanabe S. Simulating lattice thermal conductivity in semiconducting materials using high-dimensional neural network potential. Applied Physics Express, 2019, vol. 12, no. 9, 095001. https://doi.org/10.7567/1882- 0786/ab36bc

34. Simon R. B., Anaya J., Kuball M. Thermal conductivity of bulk GaN – Effects of oxygen, magnesium doping, and strain field compensation. Applied Physics Letters, 2014, vol. 105, no. 20, 202105. https://doi.org/10.1063/1.4901967

35. Sichel E. K., Pankove J.I. Thermal conductivity of GaN, 25–360 K. Journal of Physics and Chemistry of Solids, 1977, vol. 38, no. 3, p. 330. https://doi.org/10.1016/0022-3697(77)90112-3

36. Maruska H. P., Tietjen J.J. The preparation and properties of vapor-deposited single-crystal-line GaN. Applied Physics Letters, 1969, vol. 15, no. 10, pp. 327–329. https://doi.org/10.1063/1.1652845

37. Asnin V. M., Pollak F. H., Ramer J., Schurman M., Ferguson I. High spatial resolution thermal conductivity of lateral epitaxial overgrown GaN/sapphire (0001) using a scanning thermal microscope. Applied Physics Letters, 1999, vol. 75, no. 9, pp. 1240–1242. https://doi.org/10.1063/1.124654

38. Luo C.-Y., Marchand H., Clarke D.R., DenBaars S.P. Thermal conductivity of lateral epitaxial overgrown GaN films. Applied Physics Letters, 1999, vol. 75, no. 26, pp. 4151–4153. https://doi.org/10.1063/1.125566

39. Florescu D. I., Asnin V. M., Pollak F. H., Jones A. M., Ramer J. C., Schurman M. J., Ferguson I. Thermal conductivity of fully and partially coalesced lateral epitaxial overgrown GaN/sapphire (0001) by scanning thermal microscopy. Applied Physics Letters, 2000, vol. 77, no. 10, pp. 1461–1466. https://doi.org/10.1063/1.1308057

40. Shibata H., Waseda Y., Ohta H., Kiyomi K., Shimoyama K., Fujito K., Nagaoka H., Kagamitani Y., Simura R., Fukuda T. High thermal conductivity of gallium nitride (GaN) crystals grown by HVPE process. Materials Transactions, 2007, vol. 48, no. 10, pp. 2782–2786. https://doi.org/10.2320/matertrans.MRP2007109

41. Jagannadham K., Berkman E.A., Elmasry N. Thermal conductivity of semi-insulating, p-type, and n-type GaN films on sapphire. Journal of Vacuum Science & Technology A, 2008, vol. 26, no. 3, pp. 375–379. https://doi.org/10.1116/1.2899379

42. Richter E., Grunder M., Schineller B., Brunner F., Zeimer U., Netzel C., Weyers M., Trankle G. GaN boules grown by high rate HVPE. Physica Status Solidi C, 2011, vol. 8, no. 5, pp. 1450–1454. https://doi.org/10.1002/pssc.201000901


Review

Views: 461


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-8358 (Print)
ISSN 2524-244X (Online)