Preview

Proceedings of the National Academy of Sciences of Belarus. Physical-technical series

Advanced search

Magnetic characteristics of solid solutions Ni1–xMxMnSb (M = Ti, V, Cr)

https://doi.org/10.29235/1561-8358-2022-67-4-351-359

Abstract

The results of an experiment on the study of the crystal and magnetic structures of substitutional solid solutions of the Ni0.90M0.10MnSb (M = Ti, V, Cr) systems using thermal neutron diffraction in the temperature range ~ 3–300 K are presented. It is found that all the studied compositions have ferromagnetic ordering along the c axis. In the spectra of Ni0.90V0.10MnSb and Ni0.90Cr0.10MnSb solid solutions, a reflection appears in the region 2Θ = 28.6°, which indicates the formation of antiferromagnetic ordering. It has been found that this reflection disappears at a temperature T = 75 K in Ni0.90V0.10MnSb, while it is observed in the spectrum of Ni0.90Cr0.10MnSb over the entire temperature range under study. Within the framework of density functional theory (DFT), an ab initio calculation of the crystal structure and magnetic moments for Ni1–xMxMnSb (M = Ti, V, Cr; x = 0; 0.125; 0.250) was carried out. It has been established that titanium, vanadium, and chromium ions participate in electron transfer only with Mn and Sb ions. The DFT results predict the existence of magnetic moments for Ti, V, and Cr ions. It was found that the spins of Ti, V, and Cr ions are antiferromagnetically coupled with the spins of Mn and Ni ions. The results obtained are of interest for the development of new concepts and models of structural design, which makes it possible to synthesize fundamentally new functional materials with already specified physical properties.

About the Authors

G. S. Rymski
Scientific-Practical Materials Research Center of the National Academy of Sciences of Belarus
Belarus

Grigory S. Rimskiy – Researcher of the Laboratory of Physics of Magnetic Materials

19, P. Brovka Str., 220072, Minsk



A. V. Rutkauskas
Joint Institute for Nuclear Research
Russian Federation

Anton V. Rutkauskas – Ph. D. (Physics and Mathematics), Researcher of the Frank Laboratory of Neutron Physics

6, Joliot-Curie Str., Dubna, Moscow Region



E. V. Duzeva-Maltseva
National Research Center “Kurchatov Institute”
Russian Federation

Elena V. Duzeva-Maltseva – Research Laboratory Assistant of the Department of Neutron Experimental Facilities

1, Kurchatov Str., 123182, Moskow



K. I. Yanushkevich
Scientific-Practical Materials Research Center of the National Academy of Sciences of Belarus
Belarus

Kazimir I. Yanushkevich – Dr. Sc. (Physics and Mathematics), Head of the Laboratory of Physics of Magnetic Materials

19, P. Brovka Str., 220072, Minsk



D. P. Kozlenko
Joint Institute for Nuclear Research
Russian Federation

Denis P. Kozlenko – Dr. Sc. (Physics and Mathematics), Head of the Scientific and Experimental Department of Neutron Investigations of Condensed Matter, Frank Laboratory of Neutron Physics

6, Joliot-Curie Str., Dubna, Moscow Region



V. P. Glazkov
National Research Center “Kurchatov Institute”
Russian Federation

Victor P. Glazkov – Сhief Specialist of the Department of Neutron Experimental Facilities

1, Kurchatov Str., 123182, Moskow



Tuan Anh Tran
Ho Chi Minh City University of Technology and Education
Viet Nam

Tuan Anh Tran – Dr. Sc. (Engineering), Aplied Sciences Faculty

1, Vo Van Ngan Str., 70000, Ho Chi Minh



Ngoc Toan Dang
Duy Tan University
Viet Nam

Ngoc Toan Dang – Dr. Sc. (Physics and Mathematics), Faculty of Environmental and Natural Sciences

254, Nguyen Van Linh Str., 550000, Danang



Trong Phuc Hoang
Duy Tan University
Viet Nam

Trong-Phuc Hoang – Dr. Sc. (Physics and Mathematics), Faculty of Environmental and Natural Sciences

254, Nguyen Van Linh Str., 550000, Danang



References

1. Hirohata A., Yamada K., Nakatani Y., Prejbeanu I.-L., Dieny B., Pirro P., Hillebrands B. Review on spintronics: Principles and device applications. Journal of Magnetism and Magnetic Materials, 2020, vol. 509, art. ID 166711. https://doi.org/10.1016/j.jmmm.2020.166711

2. Graf T., Felser C., Parkin S. S. P. Simple rules for the understanding of Heusler compounds. Progress in Solid State Chemistry, 2011, vol. 39, no. 1, pp. 1–50. https://doi.org/10.1016/j.progsolidstchem.2011.02.001

3. Ren S. K., Gao J., Jiang X. L., Ji G. B., Zou W. Q., Zhang F. M., Du Y. W. Effects of substitution of Zn for Ni in NiMnSb alloys. Journal of Alloys and Compounds, 2004, vol. 384, no. 1–2, pp. 22–24. https://doi.org/10.1016/j.jallcom.2004.03.118

4. Ren S. K., Zou W. Q., Gao J., Jiang X. L., Zhang F. M., Du Y. W. Magnetic behavior of half-Heusler alloy CuxNi1–xMnSb. Journal of Magnetism and Magnetic Materials, 2005, vol. 288, pp. 276–281. https://doi.org/10.1016/j.jmmm.2004.09.107

5. Halder M., Yusuf S. M., Kumar A., Nigam A. K., Keller L. Crossover from antiferromagnetic to ferromagnetic ordering in the semi-Heusler alloys Cu1-xNixMnSb with increasing Ni concentration. Physical Review B, 2011, vol. 84, no. 9, art. ID 094435. http://doi.org/10.1103/PhysRevB.84.094435

6. Aksenov V. L., Balagurov A. M., Glazkov V. P., Kozlenko D. P., Naumov I. V., Savenko B. N., Sheptyakov D. V. [et al.] DN-12 time-of-flight high-pressure neutron spectrometer for investigation of microsamples. Physica B: Physics of Condensed Matter, 1999, vol. 265, no. 1–4, pp. 258–262. https://doi.org/10.1016/S0921-4526(98)01392-1

7. Glazkov V. P., Naumov I. V., Somenkov V. A., Shilshtein S. Sh. Superposition Many-Detector Systems and Neutron Diffraction of Microsamples. Nuclear Instruments and Methods in Physics Research – section A, 1988, vol. 264, no. 2–3, pp. 367–374. https://doi.org/10.1016/0168-9002(88)90925-4

8. Rodriguez-Carvajal J. Recent advances in magnetic structure determination by neutron powder diffraction. Physica B: Physics of Condensed Matter, 1993, vol. 192, no. 1–2, pp. 55–69. https://doi.org/10.1016/0921-4526(93)90108-I

9. Giannozzi P., Baroni S., Bonini N., Calandra M., Car R., Cavazzoni C., Ceresoli D. [et al.]. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. Journal of Physics: Condensed Matter, 2009, vol. 21, no. 39, art. ID 395502. https://doi.org/10.1088/0953-8984/21/39/395502

10. Giannozzi P., Andreussi O., Brumme T., Bunau O., Buongiorno Nardelli M., Calandra M., Car R. [et al.]. Advanced capabilities for materials modelling with Quantum ESPRESSO. Journal of Physics: Condensed Matter, 2017, vol. 29, no. 46, pp. 465901. https://doi.org/10.1088/1361-648X/aa8f79

11. Perdew J. P., Burke K., Ernzerhof M. Generalized Gradient Approximation Made Simple. Physical Review Letters, 1996, vol. 77, no. 18, pp. 3865–3868. https://doi.org/10.1103/PhysRevLett.77.3865

12. Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Physical Review B, 1990, vol. 41, no. 11, pp. 7892–7895. https://doi.org/10.1103/PhysRevB.41.7892

13. Bader R. F. W. A quantum theory of molecular structure and its applications. Chemical Review, 1991, vol. 91, no. 5, pp. 893–928. https://doi.org/10.1021/cr00005a013

14. Rymski G. S., Yanushkevich K. I., Rutkauskas A. V. Crystal structure and magnetic characteristics of solid solutions Ni1–xCrxMnSb. Vestsi Natsyyanal’nai akademii navuk Belarusi. Seryya fizika-technichnuch navuk = Proceedings of the National Academy of Sciences of Belarus. Physical-technical series, 2021, vol. 66, no. 3, pp. 263–269 (in Russian). https://doi.org/10.29235/1561-8358-2021-66-3-263-269

15. Rymski G. S. Yanushkevich K. I. Features of the Crystal Structure and Magnetic Characteristics of Solid Solutions Ni1–x TixMnSb (0.00 ≤ x ≤ 0.50). Vestnik Fonda fundamental’hykh issledovanii = Bulletin of the Foundation for Fundamental Research, 2021, vol. 95, no. 1, pp. 34–41 (in Russian).

16. Rymski G., Yanushkevich K. Effect of Cationic Substitution on the Crystal Structure and Magnetic Properties of Solid Solutions MnNi1–x VхSb. Vesnіk Brestskaga ўnіversіteta. Seryya 4. Fіzіka. Matematyka = Vesnik of Brest University. Series 4. Physics. Mathematics, 2021, no. 1, pp. 30–40 (in Russian).

17. Levin E. E., Bocarsly J. D., Wyckoff K. E., Pollock T. M., Seshadri R. Tuning the magnetocaloric response in half-Heusler/Heusler MnNi1+xSb solid solutions. Physical Review Materials, 2017, vol. 1, no. 7, art. ID 075003. https://doi.org/10.1103/PhysRevMaterials.1.075003

18. De Groot R. A., Kraan A. M. van der, Buschow K. H. J. FeMnSb: A half-metallic ferrimagnet. Journal of Magnetism and Magnetic Materials, 1986, vol. 61, no. 3, pp. 330–336. https://doi.org/10.1016/0304-8853(86)90046-6

19. Szytula A., Dimitrijevic Z., Todorovic J., Kolodziejczyk A., Szelag J., Wanic A. Atomic and magnetic structure of the heusler alloys NiMnSb and CoMnS. Physica Status Solidi (a), 1972, vol. 9, no. 57, pp. 97–103. https://doi.org/10.1002/pssa.2210090109

20. Grasin R., Rusu C., Laslo A., Dudric R., Mican S., Neumann M., Tetean R. Electronic and magnetic properties of NiMn1–xHoxSb compounds. Physica Status Solidi (b), 2012, vol. 249, no. 9, pp. 1779–1783. https://doi.org/10.1002/pssb.201147553

21. Kirillova M. M., Makhnev A. A., Shreder E. I., Dyakina V. P., Gorina N. B. Interband Optical Absorption and Plasma Effects in Half-Metallic XMnY Ferromagnets. Physica Status Solidi (b), 1995, vol. 187, no. 1, pp. 231–240. https://doi.org/10.1002/pssb.2221870122

22. Galanakis I., Dederichs P. H., Papanikolaou N. Origin and properties of the gap in the half-ferromagnetic Heusler alloys. Physical Review B, 2022, vol. 66, no. 13, art. ID 134428. https://doi.org/10.1103/PhysRevB.66.134428

23. Slipukhina I., Lezaic M. Electronic and magnetic properties of the Ti5O9 Magnéli phase. Physical Review B, 2014, vol. 90, no. 15, art. ID 155133. https://doi.org/10.1103/physrevb.90.155133


Review

Views: 401


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-8358 (Print)
ISSN 2524-244X (Online)