Microwave heterostructures in the form of submicron Y3Fe5O12 films on non-oriented ferroelectric ceramic substrates: synthesis, properties, and prospects for applications
https://doi.org/10.29235/1561-8358-2024-69-1-7
Abstract
In the work monolithic structures of yttrium iron garnet (YIG, Y3Fe5O12) with a thickness of about 2 μm were obtained on ferroelectric ceramic substrates based on PbZr0.45Ti0.55O3 (PZT) and Ba0.4Sr0.6TiO3 (BST). The Y3Fe5O12 layer was deposited by ion beam sputtering deposition on substrates 400 μm thick by sputtering a polycrystalline Y3Fe5O12 target with with argon ions. The heterostructures were crystallized by annealing in air at a temperature of 820 °C for 5 min. The results of the characteristic X-ray radiation method showed that the elemental composition of the monolithic heterostructure corresponds to the specified one. During X-ray studies, it was found that the YIG crystallization process is completed and the resulting structure is single-phase. The results of magnetic and ferromagnetic resonance studies indicate the possibility of using the obtained heterostructures in logic circuits based on spin waves with low scattering, in memory elements, as well as in electrically controlled microwave devices.
Keywords
About the Authors
A. I. SerokurovaBelarus
Aleksandra I. Serokurova – Cand. Sci. (Physics and Mathematics), Senior Researcher
19, P. Brovka Str., 220072, Minsk
S. A. Sharko
Belarus
Sergei A. Sharko – Cand. Sci. (Physics and Mathematics), Senior Researcher
19, P. Brovka Str., 220072, Minsk
N. N. Novitskii
Belarus
Nikolay N. Novitskii – Cand. Sci. (Physics and Mathematics), Senior Researcher
19, P. Brovka Str., 220072, Minsk
References
1. Ishak W. S. Magnetostatic wave technology: a review. Proceedings of the IEEE, 1988, vol. 76, no. 2, рр. 171–187. https://doi.org/10.1109/5.4393
2. Bukharaev A. A., Zvezdin A. K., Pyatakov A. P., Fetisov Y. K. Straintronics: a new trend in microand nanoelectronics and materials science. Physics Uspekhi, 2018, vol. 61, no. 12, рр. 1175–1212. https://doi.org/10.3367/UFNe.2018.01.038279
3. Gurevich A. G., Melkov G. A. Magnetization Oscillations and Waves. London, CRC, 1996. 464 р. https://doi.org/10.1201/9780138748487
4. Vashkovskii A. V., Stal’makhov V. S., Sharaevskii Yu. P. Magnetostatic Waves in Microwave Electronics. Saratov, Saratov State University Publ., 1993. 314 p. (in Russian).
5. Sadovnikov A. V., Grachev A. A., Sheshukova S. E., Sharaevskii Yu. P., Serdobintsev A. A., Mitin D. M., Nikitov S. A. Magnon Straintronics: Reconfigurable Spin-Wave Routing in Strain-Controlled Bilateral Magnetic Stripes. Physical Review Letters, 2018, vol. 120, art. ID 257203. https://doi.org/10.1103/PhysRevLett.120.257203
6. Stognij A. I., Novitskii N. N., Trukhanov S. V., Trukhanov A. V., Panina L. V., Sharko S. A., Serokurova A. I. [et al.]. Interface magnetoelectric effect in elastically linked Co/PZT/Co layered structures. Journal of Magnetism and Magnetic Materials, 2019, vol. 485, pp. 291–296. https://doi.org/10.1016/j.jmmm.2019.04.006
7. Stognij A. I., Sharko S. A., Serokurova A. I., Trukhanov S. V., Trukhanov A. V., Panina L. V., Ketsko V. A. [et al.]. Preparation and investigation of the magnetoelectric properties in layered cermet structures. Ceramics International, 2019, vol. 45, no. 10, pp. 13030–13036. https://doi.org/10.1016/j.ceramint.2019.03.234
8. Stognij A. I., Novitskii N. N., Golikova O. L., Bespalov A. V., Gieniusz R., Maziewski A., Stupakiewicz A. [et al.]. Growth of Y3Fe5O12 films on Si with AlOx and SiO2 buffer layers by ion beam sputtering. Inorganic Materials, 2017, vol. 53, no. 10, pp. 1069–1074. https://doi.org/10.1134/S0020168517100156
9. Lutsev L. V., Stognij A. I., Novitskii N. N., Gieniusz R. Magnetic properties, spin waves and interaction between spin excitations and 2D electrons in interface layer in Y3Fe5O12/AlOx/GaAs-heterostructures. Journal of Physics D: Applied Physics, 2017, vol. 51, no. 35, art. ID 355002 (8 p). https://doi.org/10.1088/1361-6463/aad41b
10. Stognij A., Lutsev L., Novitskii N., Bespalov A., Golikova O., Ketsko V., Gieniusz R., Maziewski A. Synthesis, magnetic properties and spin-wave propagation in thin Y3Fe5O12 films sputtered on GaN-based substrates. Journal of Physics D: Applied Physics, 2015, vol. 48, no. 48, art. ID 485002 (8 p). https://doi.org/10.1088/0022-3727/48/48/485002
11. Stognij A. I., Pashkevich M. V., Novitskii N. N. Ion-beam engineering of Co/TiO2 multilayer nanostructures. Technical Physics Letters, 2010, vol. 36, pp. 426–429. https://doi.org/10.1134/S1063785010050111
12. Petrov V. M., Srinivasan G., Laletin V. M., Bichurin M. I., Tuskov D. S., Poddubnaya N. N. Magnetoelectric effects in porous ferromagnetic-piezoelectric bulk composites: Experiment and theory. Physical Review B: Condensed Matter, 2007, vol. 75, art. ID 174422. https://doi.org/10.1103/PhysRevB.75.174422
13. Stognij A. I., Novitskii N. N., Ketsko V. A., Sharko S. A., Poddubnaya N. N., Laletin V. M., Bespalov A. V. [et al.]. Influence of the State of Interfaces on the Magnitude of the Magnetoelectric Effect in Co(Ni) Films on PbZr0.45Ti0.55O3 and GaAs Substrates. Inorganic Materials, 2016, vol. 52, no. 10, pp. 1070–1076. https://doi.org/10.1134/S0020168516100162
14. Stognij A. I., Tokarev V. V., Mitin Yu. N. The synthesis of metal oxide films from compound powder targets. Materials Research Society Proceedings, 1991, vol. 236, pp. 331–334. https://doi.org/10.1557/PROC-236-331
15. Stupakiewicz A., Pashkevich M., Maziewski A., Stognij A., Novitskii N. Spin precession modulation in a magnetic bilayer. Applied Physics Letters, 2012, vol. 101, art. ID 262406. https://doi.org/10.1063/1.4773508
16. Sakharov V. K., Khivintsev Yu. V., Vysotskii S. L., Stognij A. I., Filimonov Y. A. Enhanced Nonreciprocity of Magnetostatic Surface Waves in Yttrium-Iron-Garnet Films Deposited on Silicon Substrates by Ion-Beam Evaporation. IEEE Magnetics Letters, 2017, vol. 8, art. ID 3704105 (5 p.). https://doi.org/10.1109/LMAG.2017.2659638