1. Lyukshin B. A., Shil’ko S. V., Panin S. V., Mashkov Yu. K., Kornienko L. A., Lyukshin P. A., Pleskachevskii Yu. M. [et al.]. Dispersed-filled polymer composites for technical and medical purposes. Novosibirsk, Publ. House of the Siberian Branch of the Russian Academy of Sciences, 2017. 311 p. (in Russian).
2. Vdovin D., Abramochkin A., Borodulin A., Nelyub V. Method of Predicting the Polymer Composites’ Properties Using Neural Network Modeling. MATEC Web of Conferences (ICMTMTE 2021), 2021, vol. 346, no. 2, art. ID 02015. https://doi.org/10.1051/matecconf/202134602015
3. Kumar J. N., Qianxiao Li, Tang K. Y. T., Buonassisi T., Gonzalez-Oyarce A. L., Jun Ye. Machine learning enables polymer cloud-point engineering via inverse design. npj Computational Materials, 2019, vol. 5, art. ID 73. https://doi.org/10.1038/s41524-019-0209-9
4. Kumar J. N., Qianxiao Li, Ye Jun. Challenges and opportunities of polymer design with machine learning and high throughput experimentation, Communications, 2019, vol. 9, pp. 537-544. https://doi.org/10.1557/mrc.2019.54
5. Xie T., Grossman J. C. Hierarchical visualization of materials space with graph convolutional neural networks. The Journal of Chemical Physics, 2018, vol. 149, no. 17, art. ID 174111. https://doi.org/10.1063/1.5047803
6. Kurt H. I., Oduncuoglu M. Application of a Neural Network Model for Prediction of Wear Properties of Ultrahigh Molecular Weight Polyethylene Composites. International Journal of Polymer Science, 2015, vol. 2015, art. ID 315710. https://doi.org/httpsdoi.org/10.1155/2015/315710
7. Laptev A. B., Nesterov A. S., Vardanyan A. M., Nikolaev E. V. Development of the PET aging mechanism under conditions of exposure to heat, moisture and ultraviolet radiation. Voprosy materialovedeniya, 2021, no. 2 (106), pp. 146-160 (in Russian). https://doi.org/10.22349/1994-6716-2021-106-2-146-160
8. Polkovnikova N. A., Kureichik V. M. Neural network technologies, fuzzy clustering and genetic algorithms in an expert system. Izvestiya YuFU. Tekhnicheskiye nauki = Izvestiya SFedU. Engineering Science, 2014, no. 7 (156), pp. 7-15 (in Russian).
9. Romanova K. E., Mishurov S. S., Rumyantsev E. V., Matrokhin A. Yu. The potential of artificial intelligence in the implementation of generative educational technologies. Inzhenernoye obrazovaniye [Engineering Education], 2019, no. 26, pp. 75-83 (in Russian).
10. Melikhova O. A. Application of genetic algorithms for building artificial intelligence systems. Izvestiya YuFU. Tekhnicheskiye nauki = Izvestiya SFedU. Engineering Science, 2013, no. 7 (144), pp. 53-58 (in Russian).
11. Keller Yu. A. Development of artificial neural networks to predict technological efficiency from injectivity profile alignment. Izvestiya Tomskogo politekhnicheskogo universiteta. Informatsionnyye tekhnologii [Bulletin of the Tomsk Polytechnic University. Information Technology], 2014, vol. 325, no. 5, pp. 60-65 (in Russian).
12. Van Veen F., Leijnen S. Neural Network Zoo. The Asimov Institute. Available at: www.asimovinstitute.org/neural-network-zoo (accessed 15.09.2021) (in Russian).
13. Pavlova A. I. Information Technology: the Main Provisions of the Theory of Artificial Neural Networks. Novosibirsk, Novosibirsk State University of Economics and Management, 2017. 191 p. (in Russian).
14. Bazhenov R. I. Intelligent Information Technologies in Management. Saratov, IP Air Media, 2018. 117 p. (in Russian).
15. Nikolenko S., Kadurin A., Arkhangelskaya E. Deep Learning. St. Petersburg, Piter Publ., 2021. 480 p. (in Russian).