1. Гаршин, А. П. Новые конструкционные материалы на основе карбида кремния / А. П. Гаршин. - М.: Юрайт, 2021. - 182 c.
2. Применение техногенных отходов металлургических предприятий для производства карбида кремния / О. А. Полях [и др.] // Изв. высших учеб. заведений. Черная металлургия. - 2014. - Т. 57, № 8. - С. 5-12. https://doi.org/10.17073/0368-0797-2014-8-5-12
3. Gupta, G. S. An Analysis of Heat Distribution in the Production of SiC Process / G. S. Gupta, P. Raj, K. Tiwari // Procedia Manuf. - 2019. - Vol. 30 - P. 64-70. https://doi.org/10.1016/j.promfg.2019.02.010
4. Derevyanko, I. V. Researching of thermophysical processes in Acheson furnace for the production of silicon carbide / I. V. Derevyanko, A. V. Zhadanos // Proc. of XIV International Ferroalloys Congress INFACON “Energy efficiency and environmental friendliness are the future of the global Ferroalloy industry”, Ukraine, Kiev, May 31 - June 4, 2015. - Kiev, 2015. - Vol. 2. - P. 555-560.
5. Bahl, O. P. Anomalous behaviour of a small laboratory Acheson graphitization furnace / O. P. Bahl, B. S. Chauhan // Carbon. - 1974. - Vol. 12, № 2. - P. 214-216. https://doi.org/10.1016/0008-6223(74)90030-X
6. Koukkari, P. A Gibbs energy minimization method for constrained and partial equilibria / P. Koukkari, R. Pajarre // Pure Appl. Chem. - 2011. - Vol. 83, № 6. - P. 1243-1254. https://doi.org/10.1351/PAC-CON-10-09-36
7. Matizamhuka, W. R. Gas transport mechanisms and the behaviour of impurities in the Acheson furnace for the production of silicon carbide / W. R. Matizamhuka // Heliyon. - 2019. - Vol. 5, № 4. - P. e01535. https://doi.org/10.1016/j.heliyon.2019.e01535
8. Chen, C. Y. Kinetics of synthesis of silicon carbide by carbothermal reduction of silicon dioxide / C. Y. Chen, C. I. Lin, S. H. Chen // Br. Ceram. Trans. - 2000. - Vol. 99, № 2. - P. 57-62. https://doi.org/10.1179/bct.2000.99.2.57
9. Carbide, Nitride and Boride Materials Synthesis and Processing / ed. A. W. Weimer. - London: Chapman & Hall, 1997. - 671 p. https://doi.org/10.1007/978-94-009-0071-4
10. Agarwal, A. Influence of pellet composition and structure on carbothermic reduction of silica / A. Agarwal, U. Pad // Metall. Mater. Trans. B. - 1999. - Vol. 30, № 2. - P. 295-306. https://doi.org/10.1007/s11663-999-0059-9
11. Seo, W.-S. Morphology and stacking faults of β-silicon carbide whisker synthesized by carbothermal reduction / W.-S. Seo, K. Koumoto, S. Aria // J. Am. Ceram. Soc. - 2000. - Vol. 83, iss. 10. - P. 2584-2592. https://doi.org/10.1111/j.1151-2916.2000.tb01593.x
12. Kinetics of carbothermal reduction synthesis of beta silicon carbide / A. W. Weimer [et al.] // AIChE J. - 1993. - Vol. 39, № 3. - P. 493-503. https://doi.org/10.1002/aic.690390311
13. Abolpour, B. Mechanism of reaction of silica and carbon for producing silicon carbide / B. Abolpour, R. Shamsoddini // Prog. React. Kinet. Mech. - 2020. - Vol. 45 - Art. ID 146867831989141. https://doi.org/10.1177/1468678319891416
14. Synthesis and characterization of nanostructured silicon carbide crystal whiskers by sol-gel process and carbothermal reduction / B. Li [et al.] // Ceram. Int. - 2014. - Vol. 40, № 8. - P. 12613-12616. https://doi.org/10.1016/j.ceramint.2014.04.099
15. Raj, P. Silicon carbide formation by carbothermal reduction in the Acheson process: A hot model study / P. Raj, G. S. Gupta, V. Rudolph // Thermochim. Acta. - 2020. - Vol. 687. - Art. ID 178577. https://doi.org/10.1016/j.tca.2020.178577
16. Grinchuk, P. S. Effect of random internal structure on combustion of binary powder mixtures / P. S. Grinchuk, O. S. Rabinovich // Phys. Rev. E. - 2005. - Vol. 71, № 2. - Art. ID 026116. https://doi.org/10.1103/PhysRevE.71.026116