Анализ накопления β-излучающих радионуклидов в процессе производства радиофармпрепаратов на основе 18F с использованием циклотрона IBA CYCLONE 18/9 HC
https://doi.org/10.29235/1561-8358-2024-69-2-166-176
Аннотация
С целью уточнения схемы обращения с радиоактивными отходами исследовано накопление нежелательных β-излучающих радионуклидов (РН) при производстве радиофармпрепаратов на основе 18F с использованием циклотрона IBA CYCLONE 18/9 HC. Показано, что доминирующим примесным РН является тритий, образующийся по реакции 18О(р, t) 16О при облучении воды [18O]H2O протонами. Основная доля 3Н (около 95 %) остается в регенерированной воде; 1,6 % от наработанной активности трития уносится из зоны синтеза с газами и парами воды. Содержащие тритий отходы (регенерированная вода во флаконах) при утилизации могут рассматриваться как отходы очень низкого уровня активности. При увеличении времени наработки мишени свыше 2500 мкА·ч усиливаются процессы коррозии/эрозии материалов мишени, что приводит к резкому росту концентрации нежелательных радионуклидов в регенерированной воде, картриджах сорбционной очистки и готовой лекарственной форме. Концентрация трития при этом существенно не возрастает. В β-спектрах регенерированной воды [ 18O]H2O и готового радиофармпрепарата [18F]NaF, кроме максимума, обусловленного тритием, появляется ряд максимумов как в низко-, так и в высокоэнергетической части спектра. Другие нежелательные β-излучатели накапливаются в воде в результате выщелачивания активированной стенки мишени. Продемонстрирована возможность использования измерений активности трития в воде [18O]H2O в качестве индикатора ее повторного обогащения. Показана необходимость контроля содержания примесных β-излучающих РН в промежуточных продуктах, отходах производства и конечном радиофармпрепарате.
Об авторах
С. Д. БринкевичБеларусь
Бринкевич Святослав Дмитриевич – кандидат химических наук, доцент кафедры радиационной химии и химической технологии
пр. Независимости, 4, 220030, Минск, Республика Беларусь;
руководитель направления радиохимии
Октябрьский пр., 122, 188640, Всеволожск, Ленинградская область, Российская Федерация
Д. И. Бринкевич
Беларусь
Бринкевич Дмитрий Иванович – кандидат физико-математических наук, ведущий научный сотрудник кафедры физики полупроводников и наноэлектроники
пр. Независимости, 4, 220030, Минск, Республика Беларусь
А. И. Киевицкая
Беларусь
Киевицкая Анна Ивановна – доктор физико-математических наук, кандидат технических наук, доцент, профессор кафедры ядерной и радиационной безопасности
ул. Долгобродская 23/1, 220070, Минск
А. Н. Кийко
Беларусь
Кийко Александр Николаевич – начальник отдела измерений ионизирующих излучений
Старовиленский тракт, 93, 220053, Минск
И. А. Ковалев
Беларусь
Ковалев Игорь Александрович – заведующий изотопной циклотронно-радиохимической лабораторией
а/г Лесной, 223040, Минский район
Список литературы
1. PET-CT and PET-MRT in Oncology: A Practical Guide (Medical Radiology) / eds.: P. Peller, R. Subramaniam, A. Guermazi. – Springer, 2012. – 470 p. https://doi.org/10.1007/978-3-642-01139-9
2. Рыжов, С. А. К вопросу о безопасности персонала в отделении ядерной медицины / С. А. Рыжов, А. В. Водватов, Ю. В. Дружинина // Актуальные проблемы разработки, производства и применения радиофармацевтических препаратов: сб. тез. докл. IV Междунар. науч.-практ. конф. «РАДИОФАРМА-2021», Москва, 30 сент. – 3 окт. 2021 г. / ФГБУ ГНЦ ФМБЦ им. А. И. Бурназяна ФМБА России; под ред. Г. Е. Кодиной, А. А. Лабушкиной. – М., 2021. – С. 54.
3. Production and Quality Control of Fluorine-18 Labelled Radiopharmaceuticals. IAEA-TECDOC-1968 [Electronic resource]. – Vienna: International Atomic Energy Agency, 2021. – 155 p. – Mode of access: https://www.iaea.org/publications/14925/production-and-quality-control-of-fluorine-18-labelled-radiopharmaceuticals
4. Radiological Protection in PET and PET/CT [Electronic resource] / eds. C. H. Clement, T. Yasumune. – SAGE, 2022. – Mode of access: https://www.icrp.org/docs/TG117%20Draft%20Report%20for%20Public%20Consultation.pdf.
5. Kim, S. T. Radiation dose assessment for radiation workers during 18F-FDG synthesis and dispensing activities in hot cells: a proposal to improve the safety of radiation protection measures for workers / S. T. Kim, J. Kim, J. M. Park // Int. J. Radiat. Res. – 2019. – Vol. 17, № 4. – P. 587–593. https://doi.org/10.18869/acadpub.ijrr.17.3.587
6. Długosz-Lisiecka, M. High-Level Radioactive Wastes from 18F and 11C Isotopes Production / M. Długosz-Lisiecka, T. Jakubowska, A. Zawada // J. Hazard. Toxic Radioact. Waste. – 2020. – Vol. 25, № 2. – Art. ID 04020072. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000580
7. Qualitative Analysis of Long-Lived Residual Radioisotopes in 18 MeV Proton Bombarded Enriched Water / I. Kambali [et al.] // J. Phys: Conf. Series. – 2020. – Vol. 1436. – Art. ID 012021. https://doi.org/10.1088/1742-6596/1436/1/012021
8. Tritium in [18O]water containing [18F]fluoride for [18F]FDG synthesis / Shigeki Ito [et al.] // Appl. Radiat. Isot. – 2004. – Vol. 61, № 6. – P. 1179–1183. https://doi.org/10.1016/j.apradiso.2004.04.002
9. Бринкевич, Д. И. Активация воды контура охлаждения циклотрона Cyclone 18/9 HC при наработке 18F / Д. И. Бринкевич, А. Я. Малиборский, С. Д. Бринкевич // Ядер. физика и инжиниринг. – 2018. – Т. 9, № 4 – С. 404–410. https://doi.org/10.1134/S2079562918040024
10. Бринкевич, С. Д. Активационные радионуклиды при облучении ниобиевой мишени на циклотроне Cyclone 18/9 HC / С. Д. Бринкевич, Д. И. Бринкевич, А. Н. Кийко // Ядер. физика и инжиниринг. – 2019. – Т. 10, № 6. – С. 574–580. https://doi.org/10.1134/S2079562919050051
11. Monte Carlo simulation and radiometric characterization of proton irradiated [18O]H2O for the treatment of the waste streams originated from [18F]FDG synthesis process / R. Remetti [et al.] // Appl. Radiat. Isot. – 2011. – Vol. 69, № 7. – P. 1046–1051. https://doi.org/10.1016/j.apradiso.2011.02.008
12. Reprocessing of Irradiated [18O]H2O under the Conditions of a PET Center / S. D. Brinkevich [et al.] // Radiochemistry. – 2019. – Vol. 61, № 4. – P. 483–490. http:// doi.org/10.1134/S1066362219040131
13. Quantification of the activity of tritium produced during the routine synthesis of 18F fluorodeoxyglucose for positron emission tomography / C. Marshall [et al.] // J. Radiol. Prot. – 2014. – Vol. 34, № 2. – P. 435–444. https://doi.org/10.1088/0952-4746/34/2/435
14. Radionuclide impurities in proton-irradiated [18O]H2O for the production of 18F−: Activities and distribution in the [18F]FDG synthesis process / L. Bowden [et al.] // Appl. Radiat. Isot. – 2009. – Vol. 67, № 2. – P. 248–255. https://doi.org/10.1016/j.apradiso.2008.10.015
15. Measurement of the induced radionuclides in production of radiopharmaceuticals for positron emission tomography (PET) / Shingo Mochizuki [et al.] // J. Nucl. Sci. Technol. – 2006. – Vol. 43, № 4. – Р. 348–353. http://doi.org/10.3327/jnst.43.348
16. Radionuclide impurities in [18F]F- and [18F]FDG for positron emission tomography / M. Köhler [et al.] // Appl. Radiat. Isot. – 2013. – Vol. 81. – P. 268–271. https://doi.org/10.1016/j.apradiso.2013.03.044
17. Peixoto, C. M. Assessment of atmospheric tritium concentration levels due to the normal operation of a radiopharmaceutical production unit (UPPR) [Electronic resource] / C. M. Peixoto, V. M. F. Jacomino, V. S. Dias // 2011 Intern. Nuclear Atlantic Conf. – INAC 2011; Belo Horizonte, MG, Brazil, 24–28 Oct. 2011. – Mode of access: https://inis.iaea.org/collection/NCLCollectionStore/_Public/43/048/43048824.pdf.
18. Долгоживущие радионуклиды при производстве [18F]фторхолина для ПЭТ-диагностики / П. В. Тылец [и др.] // Вес. Нац. акад. навук Беларусі. Сер. хім. навук. – 2018. – Т. 54, № 3. – С. 359–368. https://doi.org/10.29235/1561-8331-2018-54-3-359-368
19. Niobium sputtered Havar foil for the high-power production of reactive [18F]fluoride by proton irradiation of [18O] H2O targets / J. S. Wilson [et al.] // Appl. Radiat. Isot. – 2008. – Vol. 66, № 5. – P. 565–570. https://doi.org/10.1016/j.apradiso.2007.12.004
20. Distribution and separation of metallic and radionuclides impurities in the production of 18F-fluorodeoxyglucose / K. Kilian [et al.] // J. Radioanal Nucl. Chem. – 2016. – Vol. 307, № 2. – P. 1037–1043. https://doi.org/10.1007/s10967-015-4328-6
21. Долгоживущие радионуклиды в производстве 2-[18F]фтордезоксиглюкозы / Д. И. Бринкевич [и др.] // Мед. физика. – 2018. – № 1 (77). – С. 80–88.
22. Radioactive byproducts in [18O]H2O used to produce 18F for [18F]FDG synthesis / Shigeki Ito [et al.] // Appl. Radiat. Isot. – 2006. – Vol. 64, № 3. – P. 298–305. https://doi.org/10.1016/j.apradiso.2005.10.001
23. Долгоживущие β-излучающие радионуклиды при производстве радиофармпрепаратов на основе 18F / Д. И. Бринкевич [и др.] // Вестн. Полоц. гос. ун-та. Сер. С, Фундамент. науки. – 2019. – № 4. – С. 67–76.