Influence of rapid thermal treatment on the mechanical properties of submicrostructures based on nickel and chrome films
https://doi.org/10.29235/1561-8358-2023-68-4-271-278
Abstract
The results of a study of the phase composition, surface morphology, grain size and mechanical properties of submicrostructures based on chromium and nickel before and after rapid thermal treatment (RTT) at temperatures from 200 to 550 °C are presented. Surface morphology and grain size were determined using atomic force microscopy. Mechanical properties were determined by nanoindentation. Rapid thermal treatment of nickel and chromium films significantly affects the change in phase composition, surface morphology, grain size and properties. The formation of silicides (according to the diffusion mechanism) and new phases occurs in the films: the CrSi2 phase is formed at temperatures of 350 °C and above, the Ni2Si phase at 300 °C, and the NiSi phase at 350 °C and above. When the phase composition changes, the grain size increases. In the RTT ranges from 200 to 300 °C and from 450 to 550 °C for chromium-based submicrostructures, the correlation between microhardness and grain size is carried out according to the Hall–Petch law – microhardness increases with decreasing grain size. For nickel-based submicrostructures, the Hall–Petch law is satisfied in the temperature range from 200 to 300 °C and from 500 to 550 °C. In the temperature range of 300–450 °C for chromium-based submicrostructures and 300–500 °C for nickel-based submicrostructures, microhardness decreases with decreasing grain size and vice versa, i.e. a “negative Hall– Petch effect” occurs. This effect is associated with the phase transitions Cr → CrSi2 and Ni → Ni2Si → NiSi, restructuring of submicrostructures due to the diffusion mechanism, morphological rearrangement of vacancy defects and annealing of point defects inside grains, as well as the corresponding reconstruction of grain boundaries. The considered submicrostructures based on chromium and nickel can be used in microelectronics for Schottky diodes, ohmic contacts and gates.
Keywords
About the Authors
V. A. LapitskayaBelarus
Vasilina A. Lapitskaya – Cand. Sci. (Engineering), Associate Professor, Senior Researcher
15, P. Brovka Str., 220072, Minsk
R. E. Trukhan
Belarus
Ruslan E. Trukhan – Junior Researcher
15, P. Brovka Str., 220072, Minsk
A. V. Khabarova
Belarus
Anastasiya V. Khabarova – Junior Researcher
15, P. Brovka Str., 220072, Minsk
T. A. Kuznetsova
Russian Federation
Tatyana A. Kuznetsova – Cand. Sci. (Engineering), Associate Professor
15, P. Brovka Str., 220072, Minsk
S. S. Chizhik
Belarus
Sergei A. Chizhik – Academician of the National Academy of Sciences of Belarus, Dr. Sci. (Engineering), Professor, Head of the Department of Heat Transfer and Mechanics of Micro- and Nanoscale Systems
15, P. Brovka Str., 220072, Minsk
J. A. Solovjov
Belarus
Jaroslav A. Solovjov – Cand. Sci. (Engineering), Associate Professor, Head of the Scientific and Technical Center – Head of the Laboratory
121, A. Kazinets Str., 220108, Minsk
V. A. Pilipenko
Belarus
Vladimir A. Pilipenko – Corresponding Member of the National Academy of Sciences of Belarus, Dr. Sci. (Engineering), Professor, Deputy Head of the State Center “Belmicroanalysis”
121, A. Kazinets Str., 220108, Minsk
K. S. Liutsko
Belarus
Karyna S. Liutsko – Senior Lecturer
65, Nezavisimisti Ave., 220013, Minsk
A. A. Nasevich
Belarus
Anastasiya A. Nasevich – Master’s Student
65, Nezavisimisti Ave., 220013, Minsk
Yu Guangbin
China
Guangbin Yu – Dr. Sci. (Engineering), Professor
92, Xida Str., Nangang, 150001, Harbin
References
1. Shishido T., Okada S., Ishizawa Y., Kudou K., Iizumi K., Sawada Y., Horiuchi H. [et al.]. Molten metal flux growth and properties of CrSi2. Journal of Alloys and Compounds, 2004, vol. 383, iss. 1–2, pp. 319–321. https://doi.org/10.1016/j.jallcom.2004.04.037
2. Murarka Sh. P. Silicides for VLIC. Moscow, Mir Publ., 1986. 176 p. (in Russian).
3. Kumar K. S. Intermetallics: Silicides. Encyclopedia of Materials: Science and Technology. 2nd ed. Elsevier, 2001, pp. 4243–4246. https://doi.org/10.1016/B0-08-043152-6/00744-0
4. Zhu J., Barbier D., Mayet L., Gavand M., Chaussemy G. Interstitial chromium behaviour in silicon during rapid thermal annealing. Applied Surface Science, 1989, vol. 36, iss. 1–4, pp. 413–420. https://doi.org/10.1016/0169-4332(89)90937-9
5. D’Anna E., Leggieri G., Luches A., Majni G., Ottaviani G. Chromium silicide formation under pulsed heat flow. Thin Solid Films, 1986, vol. 136, iss. 1, pp. 93–104. https://doi.org/10.1016/0040-6090(86)90112-4
6. Liu C. M., Liu W. L., Hsieh S. H., Tsai T. K., Chen W. J. Interfacial reactions of electroless nickel thin films on silicon. Applied Surface Science, 2005, vol. 243, iss.1–4, pp. 259–264. https://doi.org/10.1016/j.apsusc.2004.09.110
7. Deneb Menda U., Özdemir O., Tatar B., Ürgen M., Kutlu K. Transport and storage properties of CrSi2/Si junctions made using the CAPVD technique. Materials Science in Semiconductor Processing, 2010, vol. 13, iss. 4, pp. 257–266. https:// doi.org/10.1016/j.mssp.2010.12.002
8. Zhao F. F., Zheng J. Z., Shen Z. X., Osipowicz T., Gao W. Z., Chan L. H. Thermal stability study of NiSi and NiSi2 thin films. Microelectronic Engineering, 2004, vol. 71, iss. 1, pp. 104–111. https://doi.org/10.1016/j.mee.2003.08.010
9. Okubo K., Tsuchiya Y., Nakatsuka O., Sakai A., Zaima S., Yasuda Y. Influence of structural variation of Ni silicide thin films on electrical property for contact materials. Japanese Journal of Applied Physics, 2004, vol. 43, pp. 1896. https://doi.org/10.1143/JJAP.43.1896
10. Waidmann S., Kahlert V., Streck C., Press P., Kammler T., Dittmar K., Rinderknecht J. Tuning nickel silicide properties using a lamp based RTA, a heat conduction based RTA or a furnace anneal. Microelectronic Engineering, 2006, vol. 83, iss. 11–12, pp. 2282–2286. https://doi.org/10.1016/j.mee.2006.10.020
11. Ren B., Lu D. H., Zhou R., Ji D. P., Hu M. Y., Feng J. First principles study of stability, mechanical, and electronic properties of chromium silicides. Chinese Physics B, 2018, vol. 27, art. ID 107102. http://dx.doi.org/10.1088/1674-1056/27/10/107102
12. Wang L., Gao Y., Xue Q. A comparative study on the tribological behavior of nanocrystalline nickel and cobalt coatings correlated with grain size and phase structure. Materials Chemistry and Physics, 2006, vol. 99, iss. 1, pp. 96–103. https://doi.org/10.1016/j.matchemphys.2005.10.014
13. Laptev A. A., Belomyttsev M. Yu., Laptev A. I. Mechanical properties of nickel-silicon alloys. Izvestiya vysshikh uchebnykh zavedenii. Chernaya metallurgiya = Izvestiya. Ferrous Metallurgy, 2014, vol. 57, no. 5, pp. 47–50 (in Russian) https://doi.org/10.17073/0368-0797-2014-5-47-50
14. Chu F., Lei M., Maloy S.A., Petrovic J. J., Mitchell T. E. Elastic properties of C40 transition metal disilicides. Acta Materialia, 1996, vol. 44, iss. 8, pp. 3035–3048. https://doi.org/10.1016/1359-6454(95)00442-4
15. Pan Y. Structural Prediction and Overall Performances of CrSi2 Disilicides: DFT Investigations. ACS Sustainable Chemistry & Engineering, 2020, vol. 8, iss. 29, pp. 11024–11030. https://doi.org/10.1021/acssuschemeng.0c04737
16. Golovin Yu. I. Nanoindentation and Its Capabilities. Moscow, Mashinostroenie Publ., 2009. 312 p. (in Russian).
17. Kuznetsova T., Lapitskaya V., Solovjov J., Chizhik S., Pilipenko V., Aizikovich S. Properties of CrSi2 Layers Obtained by Rapid Heat Treatment of Cr Film on Silicon. Nanomaterials, 2021, vol. 11, iss. 7, art. ID 1734. https://doi.org/10.3390/nano11071734
18. Lapitskaya V., Trukhan R., Kuznetsova T., Solovjov J., Chizhik S., Pilipenko V., Liutsko K. [et al.]. Microstructure and Properties of Thin-Film Submicrostructures Obtained by Rapid Thermal Treatment of Nickel Films on Silicon. Surfaces, 2024, vol. 7, iss. 2, pp. 196–207. https://doi.org/10.3390/surfaces7020013
19. Gül F. Addressing the sneak-path problem in crossbar RRAM devices using memristor-based one Schottky diode-one resistor array. Results Physics, 2019, vol. 12, pp. 1091–1096. https://doi.org/10.1016/j.rinp.2018.12.092
20. Galkin N. G., Astashynski V. M., Chusovitin E. A., Galkin K. N., Dergacheva T. A., Kuzmitski A. M., Kostyukevich E. A. Ultra high vacuum growth of CrSi2 and β-FeSi2 nanoislands and Si top layers on the plasma modified monocrystalline silicon surfaces. Physics Procedia, 2011, vol. 11, pp. 39–42. https://doi.org/10.1016/j.phpro.2011.01.009
21. Adusumilli P., Seidman D. N., Murray C. E. Silicide-phase evolution and platinum redistribution during silicidation of Ni0.95Pt0.05/Si(100) specimens. Journal of Applied Physics, 2012, vol. 112, iss. 6, p. 11. http://doi.org/10.1063/1.4751023
22. Peter A. P., Meersschaut J., Richard O., Moussa A., Steenbergen J., Schaekers M., Adelmann C. Phase formation and morphology of nickel silicide thin films synthesized by catalyzed chemical vapor reaction of nickel with silane. Chemistry of Materials, 2015, vol. 27, iss. 1, pp. 245–254. http://doi.org/10.1021/cm503810p
23. Meyers М. А., Mishra A., Benson D. J. Mechanical properties of nanocrystalline materials. Progress in Materials Science, 2006, vol. 51, pp. 427–556. https://doi.org/10.1016/j.pmatsci.2005.08.003
24. Suzdalev I. P. Nanotechnology. Physicochemistry of Nanoclusters, Nanostructures and Nanomaterials. Moscow, KomKniga Publ., 2006. 592 p. (in Russian).
25. Pilipenko V. A., Solovjov J. A., Gaiduk P. I. Nickel silicide formation with rapid thermal treatment in the heat balance mode. Doklady Natsional’noi akademii nauk Belarusi = Doklady of the National Academy of Sciences of Belarus, 2021, vol. 65, no. 1, pp. 111–118 (in Russian). https://doi.org/10.29235/1561-8323-2021-65-1-111-118
26. Solovjov J. A., Pilipenko V. A., Gaiduk P. I. Structure and morphology of CrSi2 layers formed by rapid thermal treatment. Doklady BGUIR, 2020, vol. 18, no. 4, pp. 71–79 (in Russian). https://doi.org/10.35596/1729-7648-2020-18-4-71-79