Tapping mode of an atomic force microscope with a probe cantilever of a low spring constant
https://doi.org/10.29235/1561-8358-2025-70-1-57-68
Abstract
The work presents mathematical simulation results of tapping interaction of an atomic force microscope (AFM) probe with low (0.1 N/m) spring constant of its cantilever with samples of materials with the Young moduli of 0.01; 0.1; 1; 10 GPa under varying the characterizing samples surface energy Hamaker constant, oscillation amplitude of a piezoelectric element, and also the quality factor of the probe. The Johnson–Kendall–Roberts model was used to describe contact between the probe and a sample. Non-contact interaction was taken into account using the Lennard–Jones potential. It was defined that at lower values of the Hamaker constant, higher quality factor of the AFM probe, and higher oscillation amplitude of the piezoelectric generator, conditions for transition from mixed mode of probe–sample interaction, which is undesirable for obtaining AFM images, to purely elastic mode occur. However, for materials with the Young moduli of 1 and 10 GPa abrupt changes in probe characteristics occur, which are associated not with influence of surface adhesion, but with late onset steady-state mode of probe oscillation. In order to avoid non-steady state oscillation of the probe in tapping AFM mode, it is proposed to use probes with higher spring constant to obtain high-quality AFM images of material surfaces with the Young modulus of 1 GPa and higher.
Keywords
About the Authors
S. O. AbetkovskaiaBelarus
Sviatlana O. Abetkovskaia – Researcher
15, P. Brovka St., 220072, Minsk
S. A. Chizhik
Belarus
Sergei A. Chizhik – Academician of the National Academy of Sciences of Belarus, Dr. Sci. (Engineering), Professor, Head of the Department of Heat Transfer and Mechanics of Micro- and Nanoscale Systems
15, P. Brovka St., 220072, Minsk
Yu Guangbin
China
Guangbin Yu – Dr. Sci. (Engineering), Professor
92, Xida St., Nangang, 150001, Harbin
References
1. Songen H., Bechstein R., Kuhnle A. Quantitative atomic force microscopy. Journal of Physics: Condensed Matter, 2017, vol. 29, no. 27, pp. 274001-1–17. https://doi.org/10.1088/1361-648X/aa6f8b
2. Garcia R., San Paulo A. Attractive and repulsive tip-sample interaction regimes in tapping-mode atomic force microscopy. Physical Review B, 1999, vol. 60, no. 7, pp. 4961–4967. https://doi.org/10.1103/PhysRevB.60.4961
3. Stark M., Stark R. W., Heckl W. M., Guckenberger R. Inverting dynamic force microscopy: From signals to time-resolved interaction forces. The Proceedings of the National Academy of Sciences (PNAS), 2002, vol. 99, no. 13, pp. 8473–8478. https://doi.org/10.1073/pnas.122040599
4. Lee S. I., Howell S. W., Raman A., Reifenberger R. Nonlinear dynamics of microcantilevers in tapping mode atomic force microscopy: A comparison between theory and experiment. Physical Review B, 2002, vol. 66, pp. 115409-1–10. https://doi.org/10.1103/PhysRevB.66.115409
5. Lee S. I., Howell S. W., Raman A., Reifenberger R. Nonlinear dynamic perspectives on dynamic force microscopy. Ultramicroscopy, 2003, vol. 97, no. 1/4, 25 p. https://doi.org/10.1016/s0304-3991(03)00043-3
6. Hu Sh., Raman A. Analytical formulas and scaling laws for peak interaction forces in dynamic atomic force microscopy. Applied Physics Letters, 2007, vol. 91, pp. 123106-1–3. https://doi.org/10.1063/1.2783226
7. Kiracofe D., Melcher J., Raman A. Gaining insight into the physics of dynamic atomic force microscopy in complex environments using the VEDA simulator. Review of Scientific Instruments, 2012, vol. 83, no. 1, pp. 013702-1–17. https://doi.org/10.1063/1.3669638
8. Guzman H. V., Garcia P. D., Garcia R. Dynamic force microscopy simulator (dForce): A tool for planning and understanding tapping and bimodal AFM experiments. Beilstein Journal of Nanotechnology, 2015, vol. 6, pp. 369–379. https://doi.org/10.3762/bjnano.6.36
9. Wagner T. Steady-state and transient behavior in dynamic atomic force microscopy. Journal of Applied Physics, 2019, vol. 125, no. 4, pp. 044301-1–13. https://doi.org/10.1063/1.5078954
10. Bahrami M. R. Dynamic analysis of atomic force microscope in tapping mode. Vibroengineering Procedia, 2020, vol. 32, 7 p. https://doi.org/10.21595/vp.2020.21488
11. Chandrashekar A., Belardinelli P., Lenci S., Staufer U., Alijani F. Mode coupling in dynamic atomic force microscopy. Physical Rewiew Applied, 2021, vol. 15, no. 2, pp. 024013-1–11. https://doi.org/10.1103/PhysRevApplied.15.024013
12. Melcher J., Hu Sh., Raman A. Invited Article: VEDA: A web-based virtual environment for dynamic atomic force microscopy. Rewiew of Scientific Instruments, 2008, vol. 79, no. 6, pp. 061301-1–11. https://doi.org/10.1063/1.2938864
13. Thorén P.-A., Borgani R., Forchheimer D., Dobryden I., Claesson P. M., Kassa H. G., Leclère Ph. [et al.]. Modeling and measuring viscoelasticity with dynamic atomic force microscopy. Physical Rewiew Applied, 2018, vol. 10, no. 2, pp. 024017-1–13. https://doi.org/10.1103/PhysRevApplied.10.024017
14. Keyvani A., Tamer M. S., Wingerden J.-W. van, Goosen J. F. L., Keulen F. van. A comprehensive model for transient behavior of tapping mode atomic force microscope. Nonlinear Dynamics, 2019, vol. 97, pp. 1601–1617. https://doi.org/10.1007/s11071-019-05079-2
15. Farokh Payam A., Morelli A., Lemoine P. Multiparametric analytical quantification of materials at nanoscale in tapping force microscopy. Applied Surface Science, 2021, vol. 536, pp. 147698-1–15. https://doi.org/10.1016/j.apsusc.2020.147698
16. Johnson K. L. Contact Mechanics. Cambridge University Press, 1987. 452 p.
17. Abetkovskaia S. О., Chizhik S. А. Dynamic force spectroscopy of «soft» materials. Teplo- i massoperenos – 2007: sbornik nauchnykh trudov [Heat and Mass Transfer – 2007: Scientific Papers]. Minsk, A. V. Luikov Institute of Heat and Mass Transfer of the National Academy of Sciences of Belarus, 2007, pp. 323–330 (in Russian).
18. Garcia R., Gómez C. J., Martinez N. F., Patil S., Dietz C., Magerle R. Identification of nanoscale dissipation processes by dynamic atomic force microscopy. Physical Rewiew Letters, 2006, vol. 97, no. 1, pp. 016103-1–4. https://doi.org/10.1103/PhysRevLett.97.016103