Verification of software for three-dimensional radio tomographic monitoring of electron density in the ionosphere based on data from the EUREF Permanent Network
https://doi.org/10.29235/1561-8358-2025-70-1-79-88
Abstract
This paper presents the results of experimental studies and verification of software tools for three-dimensional radiotomographic monitoring of electron concentration fields in the ionosphere over Europe. The input data comprised measurements from 100 stations (including 10 in Belarus) of the EUREF Permanent Network (EPN) and navigation data from high-orbit navigation satellites in RINEX format. The developed software implements a complete data processing cycle, including primary information structuring, preliminary processing with anomalous value filtering, total electron content calculation, and three-dimensional ionosphere reconstruction. Examples of total electron content calculations over the Republic of Belarus from various ground stations (Brest, Novopolotsk, Vitebsk) are demonstrated for different time points on May 11, 2024, when Earth’s magnetosphere experienced the strongest disturbance of the current century. The results of three-dimensional radiotomographic monitoring of electron concentration fields in the ionosphere with 15-minute temporal resolution are presented, including visualization of reconstructed region cross-sections at constant latitude 50°, constant longitude 19°, and the total vertical electron content obtained by summing the reconstructed field along vertical columns. The effectiveness of the developed algorithms under strong geomagnetic disturbance conditions has been experimentally confirmed. The obtained results are suitable for ionospheric monitoring to ensure reliable radio system operation, detection of natural and artificial ionospheric anomalies, and prediction of natural phenomena based on these observations.
Keywords
About the Authors
V. M. ArtemievBelarus
Valentin M. Artemiev – Corresponding Member of the National Academy of Sciences of Belarus, Dr. Sci. (Engineering), Professor, Chief Researcher at Institute
16, Akademicheskaya St., 220072, Minsk
A. O. Naumov
Belarus
Alexander O. Naumov – Cand. Sci. (Physics and Mathematics), Head of the Laboratory
16, Akademicheskaya St., 220072, Minsk
P. A. Khmarskiy
Belarus
Petr A. Khmarskiy – Cand. Sci. (Engineering), Associate Professor, Leading Researcher, Doctoral Candidate
16, Akademicheskaya St., 220072, Minsk
References
1. Kunitsyn V. E., Tereshchenko E. D., Andreyeva E. S. Ionospheric Radiotomography. Moscow, Fizmatlit Publ., 2007. 693 p. (in Russian).
2. Hofmann-Wellenhof B., Lichtenegger H., Wasle E. GNSS – Global Navigation Satellite Systems. GPS, GLONASS, Galileo, and More. Springer, 2008. xxix, 516 p. https://doi.org/10.1007/978-3-211-73017-1
3. Naumov A. O., Khmarski P. A., Aronov G. A., Kotov D. S. Results of Studies on Processes Occurring in the Ionosphere and Earth’s Magnetic Field Over the Territory of the Republic of Belarus for the Year 2023. Nonlinear Phenomena in Complex Systems, 2024, vol. 27, no. 3, pp. 225–233. https://doi.org/10.5281/zenodo.13960570
4. Afraimovich E. L., Astafyeva E. I., Demyanov V. V., Edemskiy I. K., Gavrilyuk N S., Ishin A. B., Kosogorov E. A. [et al.]. A review of GPS/GLONASS studies of the ionospheric response to natural and anthropogenic processes and phenomena. Journal of Space Weather and Space Climate, 2013, iss. 3, art. ID A27. https://doi.org/10.1051/swsc/2013049
5. Astafyeva E., Yasyukevich Yu., Maksikov A., Zhivetiev I. Geomagnetic storms, super-storms, and their impacts on GPS-based navigation systems. Space Weather, 2014, vol. 12, iss. 7, pp. 508–525. https://doi.org/10.1002/2014SW001072
6. Artemyev V. M., Naumov A. O. Radiotomography of the electron concentration field in the ionosphere based on the Kalman filter. Vestsi Natsyyanal’nai akademii navuk Belarusi. Seryya fizika-tekhnichnykh navuk = Proceedings of the National Academy of Sciences of Belarus. Physical-technical series, 2012, no. 2, pp. 86–92 (in Russian).
7. Belokonov I. V., Krot А. М., Kozlov S. V., Kaplarchuk E. А., Savinykh I. E., Shapkin А. S. A method for estimating the total electron content in the ionosphere based on the retransmission of signals from the global navigation satellite system GPS. Informatika = Informatics, 2023, vol. 20, no. 2, pp. 7−27 (in Russian). https://doi.org/10.37661/1816-0301-2023-20-2-7-27
8. Artemiev V. M., Naumov A. O., Stepanov V. L., Murashko N. I. Method and Results of Real Time Modeling of Ionosphere Radiotomography on the Basis of the Kalman Filter Theory. Journal of Automation and Information Sciences, 2008, vol. 40, no. 2, pp. 52–62. https://doi.org/10.1615/JAutomatInfScien.v40.i2.50
9. Yasyukevich Y. V., Zhang B., Devanaboyina V. R. Advances in GNSS Positioning and GNSS Remote Sensing. Sensors, 2024, vol. 24, no. 4, art. ID 1200. https://doi.org/10.3390/s24041200
10. Yasyukevich Yu. V., Mylnikova A. A., Polyakova A. S. Estimating the total electron content absolute value from the GPS/GLONASS data. Results in Physics, 2015, vol. 5, pp. 32–33. https://doi.org/10.1016/j.rinp.2014.12.006
11. Naumov A. O., Khmarskiy P. A., Byshnev N. I., Piatrouski M. A. Determination of total electron content in the ionosphere over the territory of the Republic of Belarus based on global navigation satellite systems data. Vestsi Natsyyanal’nai akademii navuk Belarusi. Seryya fizika-tekhnichnykh navuk = Proceedings of the National Academy of Sciences of Belarus. Physical-technical series, 2024, vol. 69, no. 1, pp. 53–64. https://doi.org/10.29235/1561-8358-2024-69-1-53-6
12. Bruyninx C., Legrand J., Fabian A., Pottiaux E. GNSS metadata and data validation in the EUREF Permanent Network. GPS Solutions, 2019, vol. 23, art. ID 106. https://doi.org/10.1007/s10291-019-0880-9
13. Artemyev V. M., Khmarskiy P. A., Naumov A. O. Algorithm and methodology for optimizing its parameters for three-dimensional reconstruction of the ionosphere. Nerazrushayushchiy kontrol’ i diagnostika [Non-Destructive Testing and Diagnostics], 2024, no. 1, pp. 42–52 (in Russian).
14. Naumov A., Khmarskiy P., Byshniou N., Piatrouski M. Methods and software for calculating total electronic content based on GNSS data. 7th Advanced Engineering Days, 1–2 July. 2023. Mersin, Türkiye. 2023. P. 158–160.
15. Naumov A., Khmarskiy P., Byshnev N., Piatrouski M. Methods and software for estimation of total electron content in ionosphere using GNSS observations. Engineering Applications, 2023, vol. 2, no. 3, pp. 243–253.
16. Kenyeres A., Bellet J. G., Bruyninx C., Caporali A., Doncker F. de, Droscak B., Duret A. [et al.]. Regional integration of long-term national dense GNSS network solutions. GPS Solutions, 2019, vol. 23, iss. 4, art. ID 122. https://doi.org/10.1007/s10291-019-0902-7
17. Ihdle J., Habrich H., Sacher M., Söhne W., Altamimi Z., Brockmann E., Bruyninx C. [et al.]. EUREF’s contribution to national, European and Global Geodetic Infrastructures. Rizos C., Willis P. (eds.). Earth on the Edge: Science for a Sustainable Planet: Proceedings of the IAG General Assembly, Melbourne, Australia, June 28 – July 2, 2011. International Association of Geodesy Symposia : Vol. 139. Springer, 2014, pp. 189–196. https://doi.org/10.1007/978-3-642-37222-3_24
18. Ignacio R. RINEX. The Receiver Independent Exchange Format Version 4.00. Darmstadt, IGS/RTCM RINEX WG, 2021. 120 p.
19. Khmarski P. A., Naumov A. О. Algorithms for Three-Dimensional Reconstruction of Electron Concentration Fields in the Ionosphere using Data from the Global Navigation Satellite System. 31st Saint Petersburg International Conference on Integrated Navigation Systems (ICINS 2024), 27–29 May 2024, Saint Petersburg, Russia: [Proceedings]. St. Petersburg, State Research Center of the Russian Federation Concern CSRI Elektropribor, JSC, pp. 185–188. Available at: http://www.elektropribor.spb.ru/upload/medialibrary/8cc/31-ICINS-2024-all.pdf (accessed 21 January 2025).