Preview

Proceedings of the National Academy of Sciences of Belarus. Physical-technical series

Advanced search

Providing water resistance of surface fire protec- tion of polyester textile materials of various density by treatment with inorganic compositions

https://doi.org/10.29235/1561-8358-2025-70-2-111-123

Abstract

Formulations of inorganic phosphorus-halogen-containing fire-retardant compositions and technology of surface treatment of polyester fabric materials of various densities with them, providing a long-term water-resistant fire-protective effect, have been developed. For implementation the chemical interaction between the surface of the polyester material and the fire-retardant system, preliminary activation of the substrate was carried out and a number of modifiers were introduced into the fire-retardant composition. Electron microscopic studies have shown that chemisorption of components of the fire-retardant composition on an activated polyester substrate occurs in the presence of stable colloidal particles with a size of 4–8 nm, formed in the presence of divalent tin compounds. Comparative thermal and analytical studies of fire-protected polyester materials after washing have established the chemisorption interaction of the flame retardants components with polyethylene terephthalate. The concentration limits of the content of inhibitory elements and mediating agent on PET fabric after washing are determined, in which long-term fire protection is achieved by changing the conditions of heat and mass transfer between the material pyrolyzing in the condensed phase and the flame zone. Practical application of research results relates to the introduction of water-resistant fire-resistant materials for protective clothing of firefighters, metallurgists, welders and products made from them in public places through the use of new non-toxic, economical fire-retardant compositions.

About the Authors

O. V. Reva
University of Civil Defense of the Ministry of Emergency Situations of the Republic of Belarus
Belarus

Olga V. Reva – Cand. Sci. (Chemistry), Associate Professor, Professor the Department of Chemical, Biological, Radiation and Nuclear Protection

25, Mashinostroiteley St., 220118, Minsk



V. V. Bogdanova
Institution of the Belarusian State University “Research Institute of Physical and Chemical Problems”
Belarus

Valentina V. Bogdanova – Dr. Sci. (Chemistry), Professor, Head of the Laboratory of Fire Extinguishing Materials 

14, Leningradskaya St., 220030, Minsk



Z. V. Shukelo
Institution of the Belarusian State University “Research Institute of Physical and Chemical Problems”
Belarus

Zoya V. Shukelo – Leading Chemist of the Laboratory of Fire Extinguishing Materials 

14, Leningradskaya St., 220030, Minsk



O. I. Kobets
Institution of the Belarusian State University “Research Institute of Physical and Chemical Problems”
Belarus

Olga I. Kobets –  Cand. Sci. (Chemistry), Leading Researcher of the Laboratory of Fire Extinguishing Materials

14, Leningradskaya St., 220030, Minsk



References

1. Zubkova N. S., Antonov Yu. S. Reducing the flammability of textile materials – a solution to environmental and socio-economic problems. Rossiiskii khimicheskii zhurnal (Zhurnal Rossiiskogo khimicheskogo obshchestva im. D. I. Mendeleeva) [Russian Chemical Journal (Journal of the D. I. Mendeleev Russian Chemical Society)], 2002, vol. XLVI, no. 1, pp. 96–102 (in Russian).

2. Konstantinova N. I., Zuban’ A. V., Poedinczev E. A., Golov N. V Assessment of fire hazard of materials of tents of children’s temporary recreation camps. Pozharovzryvobezopasnost’ = Fire and Explosion Safety, 2021, vol. 30, no. 2, pp. 5–15 (in Russian). https://doi.org/10.22227/PVB.2021.30.01.5-15

3. Sabirzyanova R. N., Krasina I. V. Modern trends in the production of fire-resistant textile materials. Vestnik Kazanskogo tekhnologicheskogo universiteta [Bulletin of the Kazan Technological University], 2013, vol. 9, no. 5, pp. 75–79 (in Russian).

4. Horrocks A. R. Ch. 2. Flame retardant textile finishes. Mittal K. L., Bahners T. (eds.). Textile Finishing: Recent Developments and Future Trends. Wiley, 2017, pp. 69–127. https://doi.org/10.1002/9781119426790.ch2

5. Shebeko A. Yu., Konstantinova N. I., Tsarichenko S. G. Fire hazard of textile materials based on polyester fibers for railway cars. Pozharovzryvobezopasnost’ = Fire and Explosion Safety, 2020, vol. 29, no. 1, pp. 32–42 (in Russian). https://doi.org/10.18322/PVB.2020.29.01.32-42

6. Perepelkin K. E. Flammability of textiles as one of its most important characteristics. Khimicheskie volokna [Chemical Fibers], 2001, no. 5, pp. 8–42 (in Russian).

7. Krichevskij G. E. The role of chemistry in textile production. Evolution and revolution in textile chemistry. Rossiiskii khimicheskii zhurnal (Zhurnal Rossiiskogo khimicheskogo obshchestva im. D. I. Mendeleeva) [Russian Chemical Journal (Journal of the D. I. Mendeleev Russian Chemical Society)], 2002, vol. XLVI, no. 1, pp. 5–8 (in Russian).

8. Perepelkin K. E. Modern chemical fibers and prospects of their application in the textile industry. Rossiiskii khimicheskii zhurnal (Zhurnal Rossiiskogo khimicheskogo obshchestva im. D. I. Mendeleeva) [Russian Chemical Journal (Journal of the D. I. Mendeleev Russian Chemical Society)], 2002, vol. XLVI, no. 1, pp. 31–47 (in Russian).

9. Moryganov A. P. Development of new methods for producing and modifying promising textile materials based on domestic raw materials. Tekstil’naya khimiya [Textile Сhemistry], 1998, no. 1, pp. 82–95 (in Russian).

10. Wail E. D., Levchik S. V. Flame retardants in commercial use or development for textiles. Journal of Fire Sciences, 2008, vol. 26, iss. 3, pp. 243–281. https://doi.org/10.1177/0734904108089485

11. Horrocks A. R. Flame retardant challenges for textile and fibres: New chemistry versus innovatory solutions. Polymer Degradation and Stability, 2011, vol. 96, iss. 3, pp. 377–392. http://doi.org/10.1016/j.polymdegradstab.2010.03.036

12. Druzhinina T. V. (ed.). Chemical Fibers, Basics of Production, Methods of Research and Modification. Moscow, Moscow State Textile University named after A. N. Kosygin, 2006. 472 p. (in Russian).

13. Meshkova I. N., Ushakova T. M., Gul’tseva N. M., Grinev V. G., Ladygina T. A., Novokshonova L. A. Modification of polyolefins is a modern direction in creating polyolefin materials with a new set of properties. Polymer Science Series A, 2008, vol. 50, no. 11, pp. 1161–1174. https://doi.org/10.1134/s0965545x08110060

14. Abdullin I. Sh., Abutalimova L. N., Zheltukhin V. S., Krasina I. V. High-Frequency Plasma Processing of CapillaryPorous Materials in Dynamic Vacuum: Theory and Practice of Application. Kazan’, Kazan University Publishing House, 2004. 428 p. (in Russian).

15. Ershov I. P., Sergeeva E. A., Zenitova L. A., Abdullin I. Sh. Modification of synthetic fibers and threads: Review. Vestnik Kazanskogo tekhnologicheskogo universiteta [Bulletin of the Kazan Technological University], 2012, vol. 15, no. 18, pp. 136–143 (in Russian).

16. Volynskij A. P., Yarysheva L. M., Bakeev N. F. Crazing of polymers in liquid media is a universal continuous method of introducing modifying additives into polymer fiber. Khimicheskie volokna [Chemical Fibers], 2006, no. 2, pp. 46–50 (in Russian).

17. Prorokova N. P., Khorev A. V., Vavilova S. Yu. Chemical method of surface activation of fibrous materials based on polyethylene terephthalate. Part 1: Study of the effect of sodium hydroxide solutions and preparations based on quaternary ammonium salts. Khimicheskie volokna [Chemical Fibers], 2009, no. 3, pp. 11–16 (in Russian).

18. Kuz’min S. M., Prorokova N. P., Khorev A. V., Vavilova S. Yu. Plasma-solution modification of polyethylene terephthalate fibrous material. Khimicheskie volokna [Chemical Fibers], 2010, no. 1, pp. 26–30 (in Russian).

19. Carosio F., Alongi G., Frache A. Influence of surface activation by plasma and nanoparticle adsorption on the morphology thermal stability and combustion of PET fabrics. European Polymer Journal, 2011, vol. 47, iss. 5, pp. 893–902. https://doi.org/10.1016/j.eurpolymj.2011.01.009

20. Salmeia K. A., Gaan S., Malucelli G. Recent advances for flame retardancy of textiles based on phosphorus chemistry. Polymers, 2016, vol. 8, iss. 9, pp. 319–355. https://doi.org/10.3390/polym8090319

21. Konstantinova N. I., Zuban’ A. V. On the requirements for fire protection of textile materials. Bezopasnost’ truda v promyshlennosti = Occupational Safety in Industry, 2022, no. 1, pp. 57–62 (in Russian). https://doi.org/10.24000/0409-2961-2022-1-57-62

22. Zhang Q. H., Gu J., Chen G. Q., Xing T. L. Durable flame-retardant finish for silk fabric using boron hybrid silica sol. Applied Surface Science, 2016, vol. 387, pp. 446–453. https://doi.org//10.1016/j.apsusc.2016.06.119

23. Sirbu S. A., Czirkina O. G., Salikova A. Kh., Spiridonova V. G., Frolova T. V., Kuz’mina N. N. Problematic issues of imparting special protective properties to textile materials. Sovremennyye problemy grazhdanskoi zashchity = Modern Problems of Civil Protection, 2023, no. 2, pp. 133–139 (in Russian).

24. Spiridonova V. G., Sorokin D. V., Nikiforov A. L. Justification of current approaches to assessing the fire hazardous properties of textile materials and methods of fire protection of fabrics for various functional purposes. Sovremennyye problemy grazhdanskoi zashchity = Modern Problems of Civil Protection, 2023, no. 2 (47), pp. 125–132 (in Russian).

25. Kappes R. S., Urbainczyk T., Artz U., Textor T., Gutmann J. S. Flame retardant based on amino silanes and phenilphosphonic asid. Polymer Degradation and Stability, 2016, vol. 129, pp. 168–179. https://doi.org/10.1016/j.polymdegradstab.2016.04.012

26. Alagni Y., Tata Y., Carosio F., Rosare G., Frache A. A Comparative analysis Nanaparticle Adsorption as Fire-Protection approach for Fabrics. Polymers, 2015, vol. 7, iss. 1, pp. 47–68. https://doi.org/10.3390/polym7010047

27. Wan Norfazilah Wan Ismail. Sol-gel technology for innovative fabric finishing – A Review. Journal of Sol-Gel Science and Technology, 2016, vol. 78, pp. 698–707. https://doi.org/10.1007/s10971-016-4027-y

28. Malucelli G. Surface-Engineered Fire Protective Coatings for Fabrics through Sol-Gel and Layer-by-Layer Methods: An Overview. Coatings, 2016, vol. 6, no. 3, pp. 33–56. https://doi.org/10.3390/coatings6030033

29. Alongi G., Ciobanu M., Tata J., Carosio F., Malucelli G. Thermal stability and flame retardancy of polyester, cotton and relative blend textile fabrics subjected to sol-gel treatments. Journal of Applied Polymer Science, 2011, vol. 119, iss. 4, pp. 1961–1969. https://doi.org/10.1002/app.32954

30. Dasari A., Yu Z., Cai C. P., Ma J. W. Resent developments in the fire retardancy of polymer materials. Progress in Polymer Science, 2013, vol. 38, iss. 9, pp. 1357–1387. https://doi.org/10.1016/j.progpolymsi.2013.06.006

31. Alongi G., Collconi C., Rosare G., Malucelli G. The role of pre-hydrolysis on multistep sol-gel processes for enhancing the flame retardancy of cotton. Cellulose, 2013, vol. 20, pp. 525–535. https://doi.org/10.1007/s10570-012-9806-1

32. Sirbu S. A., Burmistrov V. A., Samoilov D. B., Salikhova A. Kh. Development of fire-retardant compositions for textile materials. Tekhnologiya tekhnosfernoi bezopasnosti = Technosphere Security Technologies, 2011, vol. 5 (39), pp. 1–7 (in Russian).

33. Konovalova M. V., Rabaeva Yu. M. Surface modification and dyeing of polyester fibers using magnetically activated aqueous solutions. Khimicheskie volokna [Chemical Fibers], 2007, no. 4, pp. 41–44 (in Russian).

34. Reva O. V., Bogdanova V. V., Nazarovich A. N., Shukelo Z. V. Influence of the composition of inorganic flame retardants, chemisorbed on polyester fibrous material, on the patterns of its thermal destruction. Vestnik komandnoinzhenernogo instituta MCHS Respubliki Belarus [Bulletin of Command-Engineering Institute of the Ministry of Emergency Situations of the Belarus Republic], 2016, vol. 23, no. 1, pp. 4–12 (in Russian).

35. Reva O. V., Bogdanova V. V., Luk’yanov A. S., Perevoznikov S. S., Andreeva T. M. Dependence of the fire protection efficiency of nonwoven polyester material on the chemical nature of nitrogen-phosphorus-containing fire-retardant. Zhurnal Belorusskogo Gosudarstvennogo universiteta. Seriya: Khimiya = Journal of the Belarusian State University. Chemistry, 2017, no. 2, pp. 85–93 (in Russian).

36. Reva O. V., Bogdanova V. V., Shukelo Z. V., Radkevich L. V. Chemical grafting of inorganic functional layers to inert polymers. Materialy. Tekhnologii. Instrumenty [Materials. Technologies. Tools], 2011, vol. 16, no. 3, pp. 90–94 (in Russian).

37. Nazarovich A. N., Reva O. V. Criteria for the development of effective inorganic flame retardants for non-woven fine-fiber polyester materials. Journal of Civil Protection, 2022, vol. 6, no. 3, pp. 263–275. https://doi.org/10.33408/2519237X.2022.6-3.263

38. Reva O. V., Bogdanova V. V., Shukelo Z. V. Chemical grafting of fire-retardant compositions to polyester matrices. Sviridovskie chteniya: sbornik statei [Sviridov Readings: Collection of Articles]. Minsk, Belarusian State University, 2013, Iss. 9, pp. 158–168 (in Russian).

39. Reva O. V., Bogdanova V. V., Luk’yanov A. S. Obtaining permanent fire protection of polyethylene terephthalate with nano-sized nitrogen-phosphorus-containing fire retardants. Nanostrukturnye materialy – 2016: Belarus’ – Rossiya – Ukraina (NANO–2016): materialy V Mezhdunarodnoi nauchnoi konferentsii, Minsk, 22–25 noyabrya 2016 g. [Nanostructured Materials – 2016: Belarus – Russia – Ukraine (NANO–2016): Proceedings of the V International Scientific Conference, Minsk, November 22–25, 2016]. Minsk, Belaruskaya navuka Publ., 2016, pp. 205–208 (in Russian).

40. Bogdanova V. V., Kobets O. I., Reva O. V. Influence of the formulation of metal phosphate fire-retardant systems and modifying additives on the resistance of fire-retardant finishing of polyester fabrics to hydrolysis treatment. Journal of Civil Protection, 2024, vol. 8, no. 4, pp. 423–436. https://doi.org/10.33408/2519-237X.2024.8-4.423

41. Petrova O. V., Ermakova L. E., Burinskaya A. A., Grebennikov S. F. The mechanism of the intensifying action of redox systems in the process of dyeing wool with acid and active dyes. Tekhnologiya tekstil’noi promyshlennosti [Textile Industry Technology], 2006, no. 2 (289), pp. 61–65 (in Russian).

42. Goloveshkina O. V., Shipinskii I. Ya., Kejbal N. A., Bondarenko S. N., Kablov V. F. New fire extinguishing compositions for polyester fibers. Informatsionnoe prostranstvo sovremennoi nauki: sbornik materialov II Mezhdunarodnoi zaochnoi nauchno-prakticheskoi konferentsii, Cheboksary, 18 sentyabrya 2010 g. [Information Space of Modern Science: Сollection of Materials of the II International Correspondence Scientific and Practical Conference, Cheboksary, September 18, 2010]. Cheboksary, 2010, pp. 118–120 (in Russian).

43. Bogdanova V. V., Kobecz O. I., Shukelo Z. V. Study of the conditions for preliminary chemical activation of woven polyester material to enhance the effectiveness of its fire-retardant. Innovatsionnyye tekhnologii zashchity ot chrezvychaynykh situatsiy: sbornik materialov Mezhdunarodnoj nauchno-prakticheskoj konferentsii, Minsk, 23 sentyabrya 2023 g. [Innovative technologies for protection from emergency situations: Сollection of Materials of the International Scientific and Practical Conference, Minsk, September 23, 2023]. Minsk, University of Civil Protection, 2023, pp. 31–32 (in Russian).

44. Powder Diffraction File. JcpDS. International Centre for Diffraction Data. Swarthmore, 1989. Available at: https://www.icdd.com

45. Bellamy L. J. The Infra-Red Spectra of Complex Molecules. Dordrecht, Springer, 2013. XIX, 433 p. https://doi.org/10.1007/978-94-011-6017-9

46. El-Saftawy A. A., Elfalaky A., Ragheb M. S., Zakhary S. G. Electron beam induced surface modifications of PET film. Radiation Physics and Chemistry, 2014, vol. 102, pp. 96–102. https://doi.org/10.1016/j.radphyschem.2014.04.025

47. Reva O. V., Nazarovich A. N., Bogdanova V. V. Fixation of inorganic flame retardants on the surface of polyester fibers. Journal of Civil Protection, 2019, vol. 3, no. 2, pp. 107–116 (in Russian).


Review

Views: 34


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-8358 (Print)
ISSN 2524-244X (Online)