Kinetics of thermal decomposition of sodium hexafluorosilicate under isothermal conditions
https://doi.org/10.29235/1561-8358-2025-70-2-145-158
Abstract
The results of an experimental study of the thermal decomposition of sodium hexafluorosilicate Na2SiF6, performed under isothermal conditions at temperatures of 600, 700, 800 and 900 °C, are discussed. It is shown that the kinetics of this process can be described using the Avrami–Erofeev equation with a variable exponent n. The range of this exponent is from 0.541 to 1.545. The average value of the exponent n, calculated for all study variants, was 0.761. As is known, the Avrami–Erofeev equation describes the kinetics of thermal decomposition of a substance in a condensed state, determined by the nucleation process. This suggests that in the case of thermal decomposition of sodium hexafluorosilicate in the temperature range of 600–900 °C, this process is the limiting stage of the overall process. It was found that the decomposition rate of the pyrolytic Na2SiF6 increases with increasing temperature. The average value of activation energy was 63.23 kJ/mol. The average value of pre-exponential factor A was 1.807 102 min–1. The results can be used in the development of equipment for obtaining polycrystalline silicon of semiconductor quality, which is the main raw material for the production of equipment used in micro- and power electronics and photovoltaics.
About the Authors
S. V. VasilevichBelarus
Sergey V. Vasilevich – Cand. Sci. (Engineering), Leading Researcher at Belarusian State Aviation Academy; Leading Researcher
15, building 2, Academicheskaya St., 220072, Minsk
D. V. Degterov
Belarus
Dmitry V. Degterov – Head of Sector
77, Uborevich St., 220072, Minsk
S. D. Yukhnevich
Belarus
Sergey D. Yukhnevich – Senior Lecturer
15, building 2, Academicheskaya St., 220072, Minsk
References
1. Leal-Cruz A. L., Pech-Canul M. I. Thermodynamics and Kinetics of Na2SiF6 Decomposition in the Synthesis of Si3N4 via the Hybrid Precursor System (HYSYCVD). Advances in Technology of Materials and Materials Processing Journal, 2007, vol. 9, no. 5, pp. 153–160. https://doi.org/10.2240/azojomo0269
2. Kashiwaya Y., Cramb A. W. Kinetics of formation and dissociation of Na2SiF6. Metallurgical and Materials Transactions B, 2002, vol. 33, pp. 129–136. https://doi.org/10.1007/s11663-002-0093-3
3. Kumar M., Babu M. N., Mankhand T. R., Pandey B. D. Precipitation of sodium silicofluoride (Na2SiF6) and cryolite (Na3AlF6) from HF/HCl leach liquors of alumino-silicates. Hydrometallurgy, 2010, vol. 104, iss. 2, pp. 304–307. https://doi.org/10.1016/j.hydromet.2010.05.014
4. Soltani N., Pech-Canul M. I., Ganzalez L. A., Bahrami A. Mechanism and Parameters Controlling the Decomposition Kinetics of Na2SiF6 Powder to SiF4. International Journal of Chemical Kinetics, 2016, vol. 48, iss. 7, pp. 379–395. https://doi.org/10.1002/kin.20999
5. Krylov V. A., Sorochkina T. G. Investigation of the source of the appearance of hydrocarbons in SiF4 during its production by pyrolysis of Na2SiF6. IX Nauchnaya konferentsiya “Analitika Sibiri i Dal’nego Vostoka”: sbornik materialov [IX Scientific Conference “Analytics of Siberia and the Far East”: Collection of Materials]. Krasnoyarsk, Siberian Federal University, 2011. Available at: http://conf.sfu-kras.ru/conf/asfe12/report?memb_id=4248. (in Russian)
6. Orlova E. A., Zagrebaev S. A., Orlov M. A., Kozlov F. A., Alekseev V. V., Drobyshev A. V., Zhmurin V. G. [et al.]. Silicon production from phosphate industry waste (Na2SiF6). Bulletin of the Lebedev Physics Institute, 2010, vol. 37, pp. 321–323. https://doi.org/10.3103/S1068335610100052
7. Sadykova M. M., Tsygankova M. V., Zimina G. V., Spiridonov F. M. By-products obtaining from nitric acid technology wastes of apatite concentrate processing. Tsvetnye metally [Non-Ferrous Metals], 2017, no. 7, pp. 62–67 (in Russian). https:// doi.org/10.17580/tsm.2017.07.10
8. Leal-Cruz A. L., Pech-Canul M. I., Certucha T. A different consideration for Na2SiF6 formation/dissociation and its relation with silicon fluoride vaporization in the steelmaking process. Mineral Processing and Extractive Metallurgy Review, 2008, vol. 29, iss. 4, pp. 318–329. https://doi.org/10.1080/08827500802043409
9. Leal-Cruz A. L., Pech-Canul M. I. Synthesis of Si3N4 from Na2SiF6 as a Solid Precursor: Microstructural Evolution. Materials Science Forum, 2007, vol. 560, pp. 109–114. https://doi.org/10.4028/www.scientific.net/MSF.560.109
10. Polyachenok O. G., Polyachenok L. D., Stepanenko V. N., Dudchik G .P., Varankova N. V. Thermodynamic analysis of some chemical processes involving silicon tetrafluoride and quartz glass. Vesnіk Magіleŭskaga dzyarzhaŭnaga ŭnіversіteta іmya A. A. Kulyashova [Bulletin of Mogilev State University named after A. A. Kuleshov], 2000, no. 4, pp. 59–66 (in Russian).
11. Vasyukov A. V. Equipment and Technological Process for Obtaining Monosilane from Apatite Processing Products for the Production of Polycrystalline Silicon [dissertation abstract]. Minsk, 2006. 22 p. (in Russian).
12. Kissinger H. E. Reaction kinetics in differential thermal analysis. Analitical Chemistry, 1957, vol. 29, iss. 11, pp. 1702–1706. https://doi.org/10.1021/ac60131a045
13. Akahira T., Sunose T. Transactions of Joint Convention of Four Electrical Institutes. Paper No. 246, 1969 Research Report Chiba Institute of Technology. Science Technology, 1971, vol. 16, pp. 22–31.
14. Friedman H. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. Journal of Polymer Science Part C: Polymer Symposia, 1964, vol. 6, iss. 1, pp. 183–195. https://doi.org/10.1002/polc.5070060121
15. Flynn J. H., Wall L. A. A quick, direct method for determination of activation energy from thermogravimetric data. Journal of Polymer Science. Part B: Polymer Letters, 1966, vol. 4, iss. 5, pp. 323–328. https://doi.org/10.1002/pol.1966.110040504
16. Ozava T. A new method of analyzing thermogravimetric data. Bulletin of the Chemical Society of Japan, 1965, vol. 38, no. 11, pp. 186–189. http://doi.org/10.1246/bcsj.38.1881
17. Coats A. W., Redfern J. P. Kinetics Parameters from Thermogravimetric Data. Nature, 1964, vol. 201, pp. 68–69. https://doi.org/10.1038/201068a0
18. Criado J. V. Kinetic ansalysis of DTA data from master curves. Thermochimica Acta, 1978, vol. 24, no. 1, pp. 186–189. https://doi.org/10.1016/0040-6031(78)85151-x
19. Malko M. V., Vasilevich S. V. Kinetics of pyrolysis of wood biomass under isothermal conditions. Vestsi Natsyyanal’nai akademii navuk Belarusi. Seryya fizika-tekhnichnykh navuk = Proceedings of the National Academy of Sciences of Belarus. Physical-technical series, 2019, vol. 64, no. 3, pp. 321–331 (in Russian). https://doi.org/10.29235/1561-8358-2019-64-3-321-331
20. Vyazovkin S., Wight C. A. Model-free and model-fitting approaches to kinetic analysis of isothermal and nonisothermal data. Thermochimica Acta, 1999, vol. 340–341, pp. 53–68. https://doi.org/10.1016/S0040-6031%2899%2900253-1
21. Yunging H. Theoretical Study of Thermal Analysis Kinetics [dissertation]. Kentucky, University of Kentucky, 2014. Available at: https://uknowledge.uky.edu/me_etds/35/ (accessed 20 July 2024).
22. Glushko V. P. (adv. red.) Thermal Constants of Substances. Moscow, All-Russian Institute of Scientific and Technical Information, 1970, Iss. 4. 510 p. (in Russian).
23. Vasilevich S. V., Mal’ko M. V., Dobrego K. V., Koznacheev I. A., Degtyarev D. V Macrokinetic Characteristics of Thermal Decomposition of Dolomite. Minsk, Belaruskaya navuka Publ., 2022. 92 p. (in Russian).