Влияние напряжения смещения на подложке на морфологию и свойства покрытий ZrN, нанесенных методом магнетронного распыления (на англ. яз.)
https://doi.org/10.29235/1561-8358-2025-70-3-185-197
Анатацыя
Напряжение смещения подложки (UB) играет важную роль в процессах формирования покрытий методом физического осаждения из паровой фазы и влияет на морфологию покрытий, их физические свойства, микротвердость, модуль упругости, напряжения, а также на структуру и фазовый состав, микроструктуру и плотность. Для определения характеристик покрытий ZrN, сформированных магнетронным распылением при напряжении смещения подложки от –10 В до –100 В, в ходе исследования использовались рентгеновская дифракция (фазовый состав), сканирующая электронная и атомно-силовая микроскопия (морфология поверхности и распределение макрочастиц на поверхности покрытия, трибологические свойства), а также наноиндентирование (микротвердость и модуль упругости). При росте отрицательного напряжения смещения подложки наблюдалось увеличение интенсивности дифракционных линий ZrN (200), (220) и (222) относительно линии ZrN (111). Шероховатость покрытий уменьшалась с ростом отрицательного напряжения смещения подложки. Самое высокое значение микротвердости (30,6 ГПа) отмечалось для покрытий, сформированных при UB = –50 В. В свою очередь низкую износостойкость по- казало покрытие, осажденное при –100 В, что связано с низким коэффициентом H/E, показывающим низкое упругое поведение покрытия при нагрузке. На покрытии с высокой износостойкостью, осажденном при –10 В, выполнены дополнительные трибологические испытания (от 10 до 50) при различных скоростях (1,99–8,00 мкм/с) и нагрузке (от 8 до 27 мкН). Полученные результаты можно применять при разработке износостойких покрытий для узлов трения различных устройств в машино- и приборостроении, энергетике и транспорте.м
Аб аўтарах
Б. ВархолинскиПольша
Т. Кузнецова
Беларусь
В. Лапицкая
Беларусь
А. Хабарова
Беларусь
С. Чижик
Беларусь
А. Гилевич
Польша
Т. Гамзелева
Беларусь
Спіс літаратуры
1. Mayrhofer P. H., Mitterer C., Hultman L., Clemens H. Microstructural design of hard coatings. Progress in Materials Science, 2006, vol. 51, iss. 8, pp. 1032–1114. https://doi.org/10.1016/j.pmatsci.2006.02.002
2. Voevodin A. A., Zabinski J. S. Nanocomposite and nanostructured tribological materials for space applications. Composites Science and Technology, 2005, vol. 65, iss. 5, pp. 741–748. https://doi.org/10.1016/j.compscitech.2004.10.008
3. Vepřek S. The search for novel, superhard materials. Journal of Vacuum Science & Technology A, 1999, vol. 17, iss. 5, pp. 2401–2420. https://doi.org/10.1116/1.581977
4. Voevodin A. A., Zabinski J. S., Muratore C. Recent advances in hard, tough, and low friction nanocomposite coatings. Tsinghua Science and Technology, 2005, vol. 10, iss. 6, pp. 665–679. https://doi.org/10.1016/S1007-0214(05)70135-8
5. Rodríguez R. J., García J. A., Medrano A., Rico M., Sánchez R., Martínez R., Labrugère C. [et al.]. Tribological behaviour of hard coatings deposited by arc-evaporation PVD. Vacuum, 2002, vol. 67, iss. 3–4, pp. 559–566. https://doi.org/10.1016/S0042-207X(02)00248-8
6. Liu C. P., Yan H. G. Systematic study of the evolution of texture and electrical properties of ZrN thin films by reactive DC magnetron sputtering. Thin Solid Films, 2003, vol. 444, pp. 111–119. https://doi.org/10.1016/S0040-6090(03)01191-X
7. Subramanian B., Swaminathan V., Jayachandran M. Microstructural, tribological and electrochemical corrosion studies on reactive DC magnetron sputtered zirconium nitride films with Zr interlayer on steel. Metals and Materials International, 2012, vol. 18, pp. 957–964. https://doi.org/10.1007/s12540-012-6007-2
8. Khan S., Mehmood M., Ahmad I., Ali F., Shah A. Structural and electrical resistivity characteristics of vacuum arc ion deposited zirconium nitride thin films. Materials Science in Semiconductor Processing, 2015, vol. 30, pp. 486–493. https://doi.org/10.1016/j.mssp.2014.10.029
9. Rizzo A., Signore M. A., Mirenghi L., Dimaio D. Deposition and properties of ZrNx films produced by radio frequency reactive magnetron sputtering. Thin Solid Films, 2006, vol. 515, iss. 4, pp. 1486–1493. https://doi.org/10.1016/j.tsf.2006.04.012
10. Ashok K., Subramanian B., Kuppusami P., Jayachandran M. Effect of substrate temperature on structural and materials properties of zirconium nitride films on D9 steel substrates. Crystal Research and Technology, 2009, vol. 44, iss. 5, pp. 511–516. https://doi.org/10.1002/crat.200800630
11. Kuleshov A. K., Uglov V. V., Rusalsky D. P., Grishkevich A. A., Chayeuski V. V., Haranin V. N. Effect of ZrN and Mo–N coatings and sulfacyanization on wear of wood-cutting knives. Journal of Friction and Wear, 2014, vol. 35, iss. 3, pp. 201–209.
12. Kadlec J., Joska Z., Kadlec J., Jr. Study of biocompatible ZrN and ZrN/DLC coating deposited on medical tools. ECS Transactions, 2014, vol. 48, iss. 1, pp. 315–318. https://doi.org/10.1149/04801.0315ecst
13. Shaochen L., Jian Z., Ruihua Z., Shangchao F., Daqin Y. Effects of sputtering pressure on microstructure and mechanical properties of ZrN films deposited by magnetron sputtering. Materials Research Bulletin, 2018, vol. 105, pp. 231–236. https://doi.org/10.1016/j.materresbull.2018.04.054
14. Kiahosseini S. R., Larijani M. M. Effects of nitrogen gas ratio on the structural and corrosion properties of ZrN thin films grown on biodegradable magnesium alloy by ion-beam sputtering. Applied Physics A, 2017, vol. 123, iss. 12, art. ID 759, 9 p. https://doi.org/10.1007/s00339-017-1389-0
15. Pei C., Deng L., Xiang C., Zhang S., Sun D. Effect of the varied nitrogen vacancy concentration on mechanical and electrical properties of ZrNx thin films. Thin Solid Films, 2019, vol. 683, pp. 57–66. https://doi.org/10.1016/j.tsf.2019.05.023
16. Spillmann H., Willmott P. R., Morstein M., Uggowitzer P. J. ZrN, ZrxAlyN and ZrxGayN thin films – novel materials for hard coatings grown using pulsed laser deposition. Applied Physics A, 2001, vol. 73, pp. 441–450. https://doi.org/10.1007/s003390100780
17. Craciun D., Socol G., Stefan N., Dorcioman G., Hanna M., Taylor C. R., Lambers E., Craciun V. The effect of deposition atmosphere on the chemical composition of TiN and ZrN thin films grown by pulsed laser deposition. Applied Surface Science, 2014, vol. 302, pp. 124–128. https://doi.org/10.1016/j.apsusc.2013.10.095
18. Ma C. H., Huang J. H., Chen H. A study of preferred orientation of vanadium nitride and zirconium nitride coatings on silicon prepared by ion beam assisted deposition. Surface and Coatings Technology, 2000, vol. 133–134, pp. 289–294. https://doi.org/10.1016/S0257-8972(00)00936-1
19. Warcholinski B., Gilewicz A., Lupicka O., Rochowicz J., Zykova A., Safonov V., Yakovin S. Mechanical and tribological characteristics of zirconium based ceramic coatings for micro-bearing application. Problems of Atomic Science and Technology, 2014, no. 6, series: Plasma Physics, iss. 20, pp. 219–222.
20. Klumdoung P., Buranawong A., Chaiyakun S., Limsuwan P. Variation of color in zirconium nitride thin films prepared at high Ar flow rates with reactive dc magnetron sputtering. Procedia Engineering, 2012, vol. 32, pp. 916–921. https://doi.org/10.1016/j.proeng.2012.02.032
21. Farkas N., Zhang G., Ramsier R. D., Evans E. A., Dagata J. A. Characterization of zirconium nitride films sputter deposited with an extensive range of nitrogen flow rates. Journal of Vacuum Science and Technology A, 2008, vol. 26, iss. 2, pp. 297–301. https://doi.org/10.1116/1.2839856
22. Pichon L., Straboni A., Girardeau T., Drouet M., Widmayer P. Nitrogen and oxygen transport and reactions during plasma nitridation of zirconium thin films. Journal of Applied Physics, 2000, vol. 87, pp. 925–932. https://doi.org/10.1063/1.371961
23. Straboni A., Pichon L., Girardeau T. Production of stable and metastable phases of zirconium nitrides by NH3 plasma nitridation and by double ion beam sputtering of zirconium films. Surface and Coatings Technology, 2000, vol. 125, iss. 1–3, pp. 100–105. https://doi.org/10.1016/S0257-8972(99)00607-6
24. Niyomsoan S., Grant W., Olson D. L., Mishra B. Variation of color in titanium and zirconium nitride decorative thin films. Thin Solid Films, 2002, vol. 415, iss. 1–2, pp. 187–194. https://doi.org/10.1016/S0040-6090(02)00530-8
25. Huang J. H., Yang H. C., Guo X. J., Yu G. P. Effect of film thickness on the structure and properties of nanocrystalline ZrN thin films produced by ion plating. Surface and Coatings Technology, 2005, vol. 195, iss. 2–3, pp. 204–213. https://doi.org/10.1016/j.surfcoat.2004.07.112
26. Purandare Y., Ehiasarian A., Santana A., Hovsepian P. ZrN coatings deposited by high power impulse magnetron sputtering and cathodic arc techniques. Journal of Vacuum Science & Technology A: Vacuum Surfaces and Films, 2014, vol. 32, iss. 3, art. ID 031507. https://doi.org/10.1116/1.4869975
27. Kuznetsova T. A., Lapitskaya V. A., Chizhik S. A., Warcholinski B., Gilewicz A. Effect of atmosphere during deposition on the morphology, mechanical properties and microfriction of Zr-based coatings. Altenbach H., Eremeyev V. A., Galybin A., Vasiliev A. (eds.). Advanced Materials Modelling for Mechanical, Medical and Biological Applications. Advanced Structured Materials, vol. 155. Springer, 2021, pp. 271–319. https://doi.org/10.1007/978-3-030-81705-3_16
28. Kuznetsova T., Lapitskaya V., Khabarava A., Chizhik S., Warcholinski B., Gilewicz A. The influence of nitrogen on the morphology of ZrN coatings deposited by magnetron sputtering. Applied Surface Science, 2020, vol. 522, art. ID 146508. https://doi.org/10.1016/j.apsusc.2020.146508
29. Arias D. F., Arango Y. C., Devia A. Study of TiN and ZrN thin films grown by cathodic arc technique. Applied Surface Science, 2006, vol. 253, iss. 4, pp. 1683–1690. https://doi.org/10.1016/j.apsusc.2006.03.017
30. Qi Z. B., Sun P., Zhu F. P., Wang Z. C., Peng D. L., Wu C. H. The inverse Hall–Petch effect in nanocrystalline ZrN coatings. Surface and Coatings Technology, 2011, vol. 205, iss. 12, pp. 3692–3697. https://doi.org/10.1016/j.surfcoat.2011.01.021
31. Panjan P., Gselman P., Kek-Merl D., Čekada M., Panjan M., Dražić G., Bončina T., Zupanič F. Growth defect density in PVD hard coatings prepared by different deposition techniques. Surface and Coatings Technology, 2013, vol. 237, pp. 349–356. https://doi.org/10.1016/j.surfcoat.2013.09.020
32. Aharonov R. R., Chhowalla M., Dhar S., Fontana R. P. Factors affecting growth defect formation in cathodic arc evaporated coatings. Surface and Coatings Technology, 1996, vol. 82, iss. 3, pp. 334–343. https://doi.org/10.1016/0257-8972(95)02773-4
33. Panjan P., Drnovšek A., Gselman P., Čekada M., Panjan M. Review of growth defects in thin films prepared by PVD techniques. Coatings, 2020, vol. 10, iss. 5, art. ID 447. https://doi.org/10.3390/coatings10050447
34. Kuznetsova T., Lapitskaya V., Khabarava A., Chizhik S., Warcholinski B., Gilewicz A., Kuprin A. [et al.]. Effect of metallic or non-metallic element addition on surface topography and mechanical properties of CrN coatings. Nanomaterials, 2020, vol. 10, art. ID 2361. https://doi.org/10.3390/nano10122361
35. Meyers М. А., Mishra А., Benson D. J. Mechanical properties of nanocrystalline materials. Progress in Materials Science, 2006, vol. 51, pp. 427–556. https://doi.org/10.1016/j.pmatsci.2005.08.003
36. Leyland A., Matthews A. On the significance of the H/E ratio in wear control: A nanocomposite coating approach to optimized tribological behaviour. Wear, 2000, vol. 246, iss. 1–2, pp. 1–11. https://doi.org/10.1016/S0043-1648(00)00488-9