Preview

Proceedings of the National Academy of Sciences of Belarus. Physical-technical series

Advanced search

Non-destructive testing of mechanical properties and thickness of Langmuir–Blodgett films by static force spectroscopy

https://doi.org/10.29235/1561-8358-2025-70-3-252-263

Abstract

Mechanical and mathematical models for calculating the physical and mechanical properties of single- and multilayer materials of nanometer thickness, selecting the contact point taking into account the type of interaction of the cantilever with the surface of the material, their advantages and disadvantages are presented. The possibility of calculating the thickness of multilayer materials by solving the inverse problem is shown. The structure and local physical and mechanical properties of Langmuir–Blodgett films based on poly(methyl methacrylate) and composite films containing 41.7; 83.3; 167; 333 mol of SiO2 nanoparticles per 1 mol of polymer were analyzed using atomic force microscopy. The AFM1 program has been developed for analyzing static force spectroscopy data, which implements the selection of the contact point according to the Johnson–Kendall–Roberts (JKR) model, and the calculation of the elastic modulus values according to the Hertz, JKR, Hsueh–Miranda, Makushkin, and Menčik models. A comparison of the calculated values of the elastic modulus and coating thickness was carried out using the above models. It was found that the film thickness values calculated using the Makushkin model correlate with the experimental data obtained by creating an artificial defect in the film. The results obtained are relevant for diagnostics and analysis of the properties of new functional nanomaterials.

About the Authors

G. B. Melnikova
A. V. Luikov Heat and Mass Transfer Institute of the National Academy of Sciences of Belarus
Belarus

Galina B. Melnikova – Cand. Sci. (Engineering), Associate Professor, Senior Researcher 

15, P. Brovka St., 220072, Minsk



A. A. Makhaniok
A. V. Luikov Heat and Mass Transfer Institute of the National Academy of Sciences of Belarus
Belarus

Alexander A. Makhaniok – Cand. Sci. (Physics and Mathematics), Associate Professor, Senior Researcher 

15, P. Brovka St., 220072, Minsk



S. A. Chizhik
A. V. Luikov Heat and Mass Transfer Institute of the National Academy of Sciences of Belarus
Belarus

Sergei A. Chizhik – Academician of the National Academy of Sciences of Belarus, Dr. Sci. (Engineering), Professor, Chief Researcher of the Laboratory of Nanoprocesses and Technologies

15, P. Brovka St., 220072, Minsk



References

1. Mwema F. M., Oladijo O. P., Sathiaraj T. S., Akinlabi E. T. Atomic force microscopy analysis of surface topography of pure thin aluminum films. Materials Research Express, 2018, vol. 5, no. 4, art. ID 046416. https://doi.org/10.1088/2053-1591/aabe1b

2. Lobo R. F. M., Pereira-da-Silva M. A., Raposo M., Faria R. M., Oliveira Jr. O. N., Pereira-da-Silva M. A., Faria R. M. In situ thickness measurements of ultra-thin multilayer polymer films by atomic force microscopy. Nanotechnology, 1999, vol. 10, no. 4, art. ID 389. https://doi.org/10.1088/0957-4484/10/4/305

3. Paribok I.V. AFM analysis of Langmuir–Blodgett film thickness. Metodologicheskie aspekty skaniruyushchei zondovoi mikroskopii: sbornik dokladov XII Mezhdunarodnoi konferentsii, Minsk, 18–21 oktyabrya 2016 g. [Methodological aspects of scanning probe microscopy: Collection of reports of the XII International Conference, Minsk, October 18–21, 2016]. Minsk, National Academy of Sciences of Belarus, A. V. Lyikov Institute of Heat and Mass Transfer], 2016, pp. 157–162 (in Russian).

4. Butt H.-J., Cappella B., Kappl M. Force measurements with the atomic force microscope: technique, interpretation and applications. Surface Science Reports, 2005, vol. 59, iss. 1–6, pp. 1–152. https://doi.org/10.1016/j.surfrep.2005.08.003

5. Timoshenko S., Goodier J. N. Theory of Elasticity. 3rd Ed. New York, McGraw Hill, 1970. 567 p.

6. Sneddon I. N. The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile. International Journal of Engineering Science, 1965, vol. 3, iss. 1, pp. 47–57. https://doi.org/10.1016/00207225(65)90019-4

7. Johnson K. L., Kendall K., Roberts A. D. Surface energy and the contact of elastic solids. Proceedings of the Royal Society of London, 1971, vol. 324, pp. 301–313. https://doi.org/10.1098/rspa.1971.0141

8. Derjagin B. V., Muller V. M., Toporov Yu. P. Effect of contact deformations on the adhesion of particles. Journal of Colloid and Interface Science, 1975, vol. 53, no. 2, pp. 314–326. https://doi.org/10.1016/0021-9797(75)90018-1

9. Johnson K. L., Greenwood J. A. An adhesion map for the contact of elastic spheres. Journal of Colloid and Interface Science, 1997, vol. 192, iss. 2, pp. 326–333. https://doi.org/10.1006/jcis.1997.4984

10. Maugis D. Adhesion of spheres: the JKR-DMT transition using a Dugdale model. Journal of Colloid and Interface Science, 1992, vol. 150, iss. 1, pp. 243–268. https://doi.org/10.1016/0021-9797(92)90285-T

11. Carpick R. W., Ogletree D. F., Salmeron M. A. General Equation for Fitting Contact Area and Friction vs Load Measurements. Journal of Colloid and Interface Science, 1999, vol. 211, iss. 2, pp. 395–400. https://doi.org/10.1006/jcis.1998.6027

12. Nguyen H. K., Fujinami S., Nakajima K. Elastic modulus of ultrathin polymer films characterized by atomic force microscopy: The role of probe radius. Polymer, 2016, vol. 87, pp. 114–122. https://doi.org/10.1016/j.polymer.2016.01.080

13. Zhuravkov M., Drozd L., Romanova N., Krupoderov A. Mechanical-mathematical modelling of biological tissue behaviour. Mityushev V. V., Ruzhansky M. (eds.). Analytic Methods in Inter disciplinary Applications. Springer Proccedings in Mathematics & Statistics, vol. 116. Springer, 2015, pp. 153–181. https://doi.org/10.1007/978-3-319-12148-2_9

14. Crick S. L., Yin F. C. P. Assessing micromechanical properties of cells with atomic force microscopy: importance of the contact point. Biomechanics and Modeling in Mechanobiology, 2007, vol. 6, pp. 199–210. https://doi.org/10.1007/s10237006-0046-x

15. Hsueh Ch.-H., Miranda P. Master curves for Hertzian indentation on coating/substrate systems. Journal of Materials Research, 2004, vol. 19, pp. 94–100. https://doi.org/10.1557/jmr.2004.19.1.94

16. Makushkin A. P. Stress-strain state of an elastic layer when a spherical indenter is introduced into it. 1. Determination of contact pressure. Friction and Wear, 1990, vol. 11, no. 3, pp. 423–434.

17. Tsukruk V. V., Sidorenko A., Gorbunov V. V., Chizhik S. A. Surface nanomechanical properties of polymer nanocomposite layers. Langmuir, 2001, vol. 17, pp. 6715–6719. https://doi.org/10.1021/la010761v

18. Menčik J. Simple models for characterization of mechanical properties by nanoindentation. Bartul Z., Trenol J. (eds.). Advances in Nanotechnology. Nova Science Publishers Inc., 2011. Vol. 5, ch. 15, pp. 307–326.

19. Dimitriadis E. K., Horkay F., Maresca J., Kachar B., Chadwick R. S. Determination of elastic moduli of thin layers of soft materials using the atomic force microscopy. Biophysical Journal, 2002, vol. 82, pp. 2798–2810. https://doi.org/10.1016/S0006-3495(02)75620-8

20. Sapsaliou D. V., Melnikova G. B., Tolstaya T. N., Chizhik S. A. Structure and properties of Langmuir – Blodgett composite films based on poly(methyl methacrylate) with silicon dioxide nanoparticles. Butlerov Communications B., 2022, vol. 3, no. 2, id. 7, pp. 131–140. https://doi.org/10.37952/ROI-jbc-В/22-3-2-7

21. Mohammed S., Makhaniok A. A., Melnikova G. B., Chizhik S. A. New mechanisms for nanoindentation data processing using atomic force microscopy. Nauka i tekhnika = Science and Technique, 2015, no. 1, pp. 52–60 (in Russian).

22. Ishiyama C., Higo, Y. Effects of Humidity on Young’s Modulus in Poly (Methyl Methacrylate). Journal of Polymer Science Part B: Polymer Physics, 2002, vol. 40, iss. 5, pp. 460−465. https://doi.org/10.1002/polb.10107

23. Wang G., Najafi F., Ho K., Hamidinejad M., Cui T., Walker G. C., Singh C. V., Filleter T. Mechanical size effect of freestanding nanoconfined polymer film. Macromolecules, 2022, vol. 55, iss. 4, pp. 1248–1259. https://doi.org/10.1021/acs.macromol.1c02270

24. Christöfl P., Czibula C., Berer M., Oreski G., Teichert C., Pinter G. Comprehensive investigation of the viscoelastic properties of PMMA by nanoindentation. Polymer Testing, 2021, vol. 93, pp. 106978–106987. https://doi.org/10.1016/j.polymertesting.2020.106978

25. Wunderlich W. Physical Constants of Poly(Methyl Methacrylate). Brandrup J., Immergut E. H. (eds.). Polymer Handbook. 3rd ed. John Wiley & Sons, 1989, pp. V/87–V/90.


Review

Views: 10


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-8358 (Print)
ISSN 2524-244X (Online)