Regularities of formation of structure and properties of porous composites based on basalt fiber in the process of thermocycling
https://doi.org/10.29235/1561-8358-2025-70-4-271-284
Abstract
The results of studying the structure and properties of two compositions of porous composite materials of the CaO–MgO–FeO(Fe2O3)–Al2O3–SiO2 system based on basalt fiber formed during thermal cycling are presented. The samples made from the mixture of composition I had the following structure: basalt fiber (37 wt.%) + mullite-silica fiber (19 wt.%) + modifier Al 2(SO4)3 as a binder (11 wt.%) + blowing agent (19 wt.%) + porcelain as a hardener (4 wt.%) + plasticizer (11 wt.%); II composition: basalt fiber (52 wt.%) + SiO2 (15 wt.%) + blowing agent (1 wt.%) + porcelain (aluminosilicate) as hardener (6.5 wt.%) + plasticizer (CMC, 6.5 wt.%) + limestone flour (calcium carbonate, CaCO3, 19 wt.%). Thermal cycling was carried out in three temperature ranges of 750–770 °C, 1025–1075 °C, 1070–1090 °C in order to obtain certain structure and properties of composites pressed under pressure of 20, 40 and 60 MPa. To control surface morphology, changes in phase composition, amorphousness and fine structure parameters, porosity, permeability and strength properties, samples were evaluated at each process cycle. On the basis of established patterns of structure formation, modes of formation of pore space are proposed with preservation of porosity not lower than 45 %, strength 5–25 MPa, shrinkage in the process of sintering – not more than 20 %. The studied composite materials can be used to create filter elements of systems for separating, cleaning, converting liquid and gaseous media.
About the Authors
E. E. PetyushikRussian Federation
Evgeny E. Petyushik – Dr. Sci. (Engineering), Professor, Deputy Director General for Research
41, Platonov St., 220005, Minsk
I. V. Fomikhina
Belarus
Irina V. Fomikhina – Dr. Sci. (Engineering), Associate Professor, Head of the Laboratory of Metal Physics
41, Platonov St., 220005, Minsk
A. A. Drobysh
Belarus
Aleksey A. Drobysh – Cand. Sci. (Engineering), Associate Professor, Dean of the Faculty of Engineering and Pedagogy
65, Nezavisimosti Ave., 220013, Minsk
References
1. Vityaz P. A., Kaptsevich V. M., Kusin R. A. Filtering Materials: Properties, Scope, Manufacturing Technology. Minsk, Research Institute of Powder Metallurgy with Pilot Production Publ., 1999. 304 p. (in Russian).
2. Rat’ko A. I., Ivanets A. I., Stepanova E. A., Azarov S. M. Binder influence on the structural and mechanical properties of porous silicate ceramics. Protection of Metals and Physical Chemistry of Surfaces, 2009, vol. 45, no. 2, pp. 207–211. https://doi.org/10.1134/s2070205109020142
3. Anziferov V. N., Porozova C. E., Matiygullina E. V., Chafizova R. M. Surface modification of high-porous ceramic materials. Ogneupory i technitcheskaja keramica = Refractories and Technical Ceramics, 2004, no. 8, pp. 2–4 (in Russian).
4. Berdov G. I., Lienko V. A., Pletnev P. M., Rogov I. I. Ways to improve the technology and properties of structural ceramic materials. Konstruktsii iz kompozitsionnykh materialov = Composite Materials Constructions, 2004, no. 2, pp. 5–9 (in Russian).
5. Berdov G. I., Lienko V. A., Pletnev P. M., Rogov I. I. The effect of powder particle size on the structural characteristics of porous permeable macrobodies based on natural quartz. Poroshkovaya metallurgiya: resp. mezhvedomstv. sb. nauch. tr. [Powder Metallurgy: Republican Interdepartmental Collection of Scientific Papers]. Minsk, 2006, iss. 29, pp. 337–341 (in Russian).
6. Besarab S., Azarov S., Sauka J., Petyushik E., Azarova T., Drobysh A. Investigation of the structure and properties of ceramic materials with a rigid system microfiltration transport pores based on basalt fibers [preprint]. ChemRxiv. 2021. https://doi.org/10.26434/chemrxiv-2021-46cg5
7. Chukhrov F. V., Ostrovsky I. A., Lapin V. V. (eds). Minerals. Phase Equilibrium Diagrams: Guide. Vol. 1: Phase Equilibria Important for Natural Mineral Formation. Moscow, Nauka, 1974. 515 p. (in Russian).
8. Rabukhin, A. I., Savelyev V. G. Physical Chemistry of Refractory Non-Metallic and Silicate Compounds. Moscow, Infra-M Publ, 2008. 304 p. (in Russian).
9. Lukin E. S., Kuteinikova A. L., Popova N. A. Porous Permeable Ceramics Based on Aluminum Oxide. Glass and Ceramics, 2003, vol. 60, рр. 81–82. https://doi.org/10.1023/a:1024727830665
10. Radchenko S. L., Dyatlova E. M., Kolontayeva T. V., Biryuk V. A. Features of formation of porous structures of ceramic materials with different burning components. Vestsi Natsyyanal’nai akademii navuk Belarusi. Seryya khimichnykh navuk = Proceedings of the National Academy of Sciences of Belarus. Chemical series, 2003, vol. 76, no. 1, pp. 107–110 (in Russian).
11. Vorob’eva V. V., Leonov V. G. The Effect of the Finely Dispersed Component on the Formation of a Porous Permeable Structure in Ceramics. Glass and Ceramics, 2002, vol. 59, no. 5–6, pp. 205–207. https://doi.org/10.1023/a:1020444416597
12. Petyushik E. E, Fomikhina I. V., Markova L. V., Gamzeleva T. V., Dershen A. V., Drobysh A. A., Evtukhova T. E. Regularities of the effect of sintering temperature and composition of the reinforcing component on the strength of composite materials based on basalt fiber. Poroshkovaya metallurgiya: resp. mezhved. sb. nauch. tr. [Powder Metallurgy: Republican Interdepartmental Collection of Scientific Papers]. Minsk, 2022, iss. 45, pp. 136–142 (in Russian).
13. Azarov S. M., Piatsiushyk E. E., Azarova T. A., Ratʼko A. I., Reut O. P., Makartshuk D. V. Porous Aluminosilicate Ceramics. Minsk, Kovcheg Publ., 2009. 258 p. (in Russian).
14. Kornilov A. V. Reasons for the different effects of calcareous clays on strength properties of ceramics. Glass and Ceramics, 2005, vol. 62, no. 11–12, pp. 391–393. https://doi.org/10.1007/s10717-006-0017-9
15. Ryzhkov I. V., Tolstoy V. S. Physicochemical Foundations of the Formation of Properties of Mixtures with Liquid Glass. Kharkov, Vysshaya shkola Publ., 1975. 140 p. (in Russian).
16. Hwang S., Chen I. Grain Size Control of Tetragonal Zirconia Polycrystals Using the Space Charge Concept. Journal of the American Ceramic Society, 1990, vol. 73, no. 11, pp. 3269–3277. https://doi.org/10.1111/j.1151-2916.1990.tb06449.x
17. Ikeda J. A. S., Chiang Y. Space Charge Segregation at Grain Boundaries in Titanium Dioxide: I, Relationship between Lattice Defect Chemistry and Space Charge Potential. Journal of the American Ceramic Society, 1993, vol. 76, iss. 10, pp. 2437–2446. https://doi.org/10.1111/j.1151-2916.1993.tb03964.x
18. Ikeda J. A. S., Chiang Y., Garratt‐Reed A. J., Sande J. B. V. Space Charge Segregation at Grain Boundaries in Titanium Dioxide: II, Model Experiments. Journal of the American Ceramic Society, 1993, vol. 76, iss. 10, pp. 2447–2459. https://doi.org/10.1111/j.1151-2916.1993.tb03965.x
19. Chiang Y., Takagi T. Grain‐Boundary Chemistry of Barium Titanate and Strontium Titanate: I, High‐Temperature Equilibrium Space Charge. Journal of the American Ceramic Society, 1990, vol. 73, iss. 11, рр. 3278–3285. https://doi.org/10.1111/j.1151-2916.1990.tb06450.x
20. Chiang Y.-M., Kingery W. D. Grain-Boundary Migration in Nonstoichiometric Solid Solutions of Magnesium Aluminate Spinel: II, Effects of Grain-Boundary Nonstoichiometry. Journal of the American Ceramic Society, 1990, vol. 73, iss. 5, pp. 1153–1158. https://doi.org/10.1111/j.1151-2916.1990.tb05172.x
21. Bennison S. J., Harmer M. P. A history of the role of MgO in the sintering of α- Al2O3. Handwerker C. A., Blendell J. E., Kaysser W. A. (eds.). Ceramic. Transactions. Vol. 7: Sintering of Advanced Ceramics. American Ceramic Society, Columbus, OH, 1990, pp. 13–49.
22. Johnson W. C., Coble R. L. A Test of the Second-Phase and Impurity-Segregation Models for MgO-Enhanced Densification of Sintered Alumina. Journal of the American Ceramic Society, 1978, vol. 61, iss. 3–4, pp. 110–114. https://doi.org/10.1111/j.1151-2916.1978.tb09250.x
23. Stephen J., Bennison S., Martin P., Harmer M. Grain-Growth Kinetics for Alumina in the Absence of a Liquid Phase. Journal of the American Ceramic Society, 1985, vol. 68, iss. 1, pp. C-22–C-24. https://doi.org/10.1111/j.1151-2916.1985.tb15259.x
24. Berry K. A., Harmer M. P. Effect of MgO Solute on Microstructure Development in Al2O3. Journal of the American Ceramic Society, 1986, vol. 69, iss. 2, pp. 143–149. https://doi.org/10.1111/j.1151-2916.1986.tb04719.x
25. Baik S. Segregation of Mg to the (0001) Surface of Single-Crystal Alumina: Quantification of AES Results. Journal of the American Ceramic Society, 1986, vol. 69, iss. 5, pp. C-101–C-103. https://doi.org/10.1111/j.1151-2916.1986.tb04780.x
26. Baik S., White C. L. Anisotropic Calcium Segregation to the Surface of Al2O3. Journal of the American Ceramic Society, 1987, vol. 70, iss. 9, pp. 682–688. https://doi.org/10.1111/j.1151-2916.1987.tb05739.x































