Preview

Известия Национальной академии наук Беларуси. Серия физико-технических наук

Расширенный поиск

Анализ технологий проектирования и создания двухфазных термосифонов для систем охлаждения

https://doi.org/10.29235/1561-8358-2025-70-4-320-335

Аннотация

Выполнен краткий анализ актуальных разработок, исследований и применения двухфазных термосифонов в технике. Наиболее актуальным в данный момент является поиск перспективы применения термосифонов для охлаждения электроники (силовой и микроэлектроники). При этом рассмотрены и другие возможности использования данного теплообменного элемента: стабилизация температуры почвы, консервация вечной мерзлоты, охлаждение теплонагруженного оборудования, в составе систем кондиционирования теплообменников, а также в атомной промышленности. Особое внимание уделено выбору рабочей жидкости и поиску оптимального коэффициента наполнения устройства, способам интенсификации теплообмена и влиянию конструкции термосифона на его производительность.

Об авторах

А. А. Гаспорович
Институт тепло- и массообмена имени А. В. Лыкова Национальной академии наук Беларуси
Беларусь

Гаспорович Алёна Александровна – научный сотрудник  

ул. П. Бровки, 15, 220072, Минск 



М. А. Кузьмич
Институт тепло- и массообмена имени А. В. Лыкова Национальной академии наук Беларуси
Беларусь

Кузьмич Максим Александрович – научный сотрудник  

ул. П. Бровки, 15, 220072, Минск 



Список литературы

1. Experimental investigation on air-cooling type loop thermosyphon thermal characteristic with serpentine tube heat exchanger / Y. He, C. Hu, H. Li [et al.] // International Journal of Refrigeration. – 2022. – Vol. 138. – P. 52–60. https://doi.org/10.1016/j.ijrefrig.2022.03.009

2. Liu, Q. Experimental Study on Thermosyphon for Shipboard High-Power Electronics Cooling System / Q. Liu, K. Fukuda, P. F. Sutopo // Heat Transfer Engineering. – 2014. – Vol. 35. – P. 1077–1083. https://doi.org/10.1080/01457632.2013.863096

3. Experimental study on the effect of filling ratio on an R141b two-phase thermosyphon loop with a horizontal parallel tube evaporator / M. Yao, Y. Gan, Q. Luo [et al.] // International Journal of Refrigeration. – 2022. – Vol. 137. – P. 230–243. https://doi.org/10.1016/j.ijrefrig.2022.02.013

4. Zamanifard, A. An experimental evaluation of the performance of a remote 2U loop thermosyphon / A. Zamanifard, C.-C. Wang // Applied Thermal Engineering. – 2024. – Vol. 248, part B. – Art. ID 123243. https://doi.org/10.1016/j.applthermaleng.2024.123243

5. A novel thermosyphon cooling applied to concentrated photovoltaic-thermoelectric system for passive and efficient heat dissipation / H. Yao, W. Pu, J. Wang [et al.] // Applied Thermal Engineering. – 2024. – Vol. 236, part A. – Art. ID 121460. https://doi.org/10.1016/j.applthermaleng.2023.121460

6. Experimental optimization on the volume-filling ratio of a loop thermosyphon photovoltaic/thermal system / T. Zhang, Z. Yan, G. Pei [et al.] // Renewable Energy. – 2019. – Vol. 143. – P. 233–242. https://doi.org/10.1016/j.renene.2019.05.014

7. Panse, S. S. A thermosiphon loop for high heat flux removal using flow boiling of ethanol in OMM with taper / S. S. Panse, S. G. Kandlikar // International Journal of Heat and Mass Transfer. – 2017. – Vol. 106. – P. 546–557. https://doi.org/10.1016/j.ijheatmasstransfer.2016.09.020

8. Matsubara, K. Thermosiphon loop thermal collector for low-temperature waste heat recovery / K. Matsubara, Y. Matsudaira, I. Kourakata // Applied Thermal Engineering. – 2016. – Vol. 92. – P. 261–270. https://doi.org/10.1016/j.applthermaleng.2015.09.004

9. Long horizontal vapordynamic thermosyphons for renewable energy sources / L. L. Vasiliev, L. L. Vassiliev Jr., M. I. Rabetsky [et al.] // Heat Transfer Engineering. – 2019. – Vol. 40, iss. 3–4. – P. 258–266. https://doi.org/10.1080/01457632.2018.1426252

10. Development and testing of a novel horizontal loop thermosyphon as a kW-class heat transfer device / L. Vasiliev, A. Zhuravlyov, M. Kuzmich, V. Kulikouski // Applied Thermal Engineering. – 2022. – Vol. 200. – Art. ID 117682. https://doi.org/10.1016/j.applthermaleng.2021.117682

11. Кольцевой термосифон для охлаждения теплонагруженных компонентов электроники / Л. Л. Васильев, А. С. Журавлёв, М. А. Кузьмич [и др.] // Инженерно-физический журнал. – 2023. – Т. 96, № 7. – С. 1740–1747.

12. Фисенко, С. Пленочное течение теплоагента в замкнутом термосифоне / С. Фисенко // Инженерно-физический журнал. – 2022. – Т. 95, № 6. – С. 1148–1152.

13. Modeling and test of a thermosyphon loop for the cooling of a megawatt-range power electronics converter / M. Moustaid, V. Platel, M. Guillet [et al.] // International Journal of Thermofluids. – 2022. – Vol. 13. – Art. ID 100129. https://doi.org/10.1016/j.ijft.2021.100129

14. Air-Cooled Loop Thermosyphon Cooling System for High Heat Load CPUs–Part I: Design and Performance Simulation / J. B. Marcinichen, G. S. R. B Armas, G. Rouaze [et al.] // IEEE Transaction Components, Packaging Manufacturing Technology. – 2021. – Vol. 11, iss. 10. – P. 1679–1686. https://doi.org/10.1109/TCPMT.2021.3112080

15. Review of applications and developments of ultra-thin micro heat pipes for electronic cooling / H. Tang, Y. Tang, Z. Wan [et al.] // Applied Energy. – 2018. – Vol. 223. – P. 383–400. https://doi.org/10.1016/j.apenergy.2018.04.072

16. Impact of working fluid properties on heat transfer and flow characteristics of two-phase loop thermosyphon with high filling ratios / Y. Cai, X. Hu, J. Lu [et al.] // International Journal of Heat and Mass Transfer. – 2025. – Vol. 238. – Art. ID 126482. https://doi.org/10.2139/ssrn.4813552

17. Kalantarpour, R. Enhancing heat transfer in thermosyphons: The role of self-rewetting nanofluids, and filling ratios for improved performance / R. Kalantarpour, K. Vafai // International Journal of Heat and Mass Transfer. – 2024. – Vol. 223. – Art. ID 125284. https://doi.org/10.1016/j.ijheatmasstransfer.2024.125284

18. Gupta, S. Computational fluid dynamics: innovations in numerical techniques, multi-phase flow modeling, and prospects for sustainable energy applications / S. Gupta, M. Kumar // Journal of Sustainable Urban Futures. – 2023. – Vol. 13, iss. 9. – P. 1–20.

19. Zhang, M. The experimental investigation on thermal performance of a flat two-phase thermosyphon / M. Zhang, Z. Liu, G. Ma // International Journal of Thermal Sciences. – 2008. – Vol. 47, iss. 9. – P. 1195–1203. https://doi.org/10.1016/j.ijthermalsci.2007.10.004

20. Zhang, M. Numerical simulation and experimental verification of a flat two-phase thermosyphon / M. Zhang, Z. Liu, G. Ma // Energy Conversion and Management. – 2009. – Vol. 50. – P. 1095–1100. https://doi.org/10.1016/j.enconman.2008.12.001

21. Experimental study on the thermal characteristics of micro channel separate heat pipe respect to different filling ratio / L. Ling, Q. Zhang, Y. Yu [et al.] // Applied Thermal Engineering. – 2016. – Vol. 102. – P. 375–382. https://doi.org/10.1016/j.applthermaleng.2016.03.016

22. Experimental study on the influence of initial state parameters on the start-up and heat transfer characteristics of separated heat pipe system / Z. Xinyu, J. Lv, H. Cheng [et al.] // Annals of Nuclear Energy. – 2024. – Vol. 208. – Art. ID 110810. https://doi.org/10.1016/j.anucene.2024.110810

23. Experimental investigation of two-phase thermosyphon loop for passive containment cooling / Y. Xuan, J. Hu, X. Chi [et al.] // Applied Thermal Engineering. – 2021. – Vol. 184. – Art. ID 116403. https://doi.org/10.1016/j.applthermaleng.2020.116403

24. Sandeep, K. S. Design and thermodynamic analysis of single-loop thermosyphon / K. S. Sandeep, G. Narendar // Proceedings of the Second International Conference on Emerging Trends in Engineering (ICETE 2023). – 2023. – Р. 1197–1207. – (Advances in Engineering Research). https://doi.org/10.2991/978-94-6463-252-1_120

25. Nanofluids: key parameters to enhance thermal conductivity and its applications / H. Younes, M. Mao, S. M. Sohel Murshed [et al.] // Applied Thermal Engineering. – 2022. – Vol. 207. – Art. ID 118202. https://doi.org/10.1016/j.applthermaleng.2022.118202

26. Fulpagare, Y. Performance of two-phase loop thermosiphon with graphene nanofluid / Y. Fulpagare, D.-Y. Tsai, C.-C. Wang // Applied Thermal Engineering. – 2022. – Vol. 200. – Art. ID 117714. https://doi.org/10.1016/j.applthermaleng.2021.117714

27. Кисеев, В. М. Экспериментальное исследование кипения наножидкостей в термосифонах / В. М. Кисеев, О. В. Сажин // Журнал технической физики. – 2023. – Т. 93, вып. 10. – С. 1410–1422. https://doi.org/10.61011/JTF.2023.10.56278.134-23

28. Khodabandeh, R. Heat transfer, flow regime and instability of a nano- and micro-porous structure evaporator in a two-phase thermosyphon loop / R. Khodabandeh, R. Furberg // International Journal of Thermal Sciences. – 2010. – Vol. 49, iss. 7. – P. 1183–1192. https://doi.org/10.1016/j.ijthermalsci.2010.01.016

29. Experimental investigation on air-cooling type loop thermosyphon thermal characteristic with serpentine tube heat exchanger / Y. He, C. Hu, H. Li [et al.] // International Journal of Refrigeration. – 2022. – Vol. 138. – P. 52–60. https://doi.org/10.1016/j.ijrefrig.2022.03.009

30. Wagner, A. M. Review of Thermosyphon Applications. Final report ERDC/CRREL TR-14-1 / A. M. Wagner. – Cold Regions Research and Engineering Laboratory (CRREL), 2014. – URL: https://dot.alaska.gov/stwddes/research/assets/pdf/erdc-crrel-tr-14-1.pdf.

31. Системы термостабилизации грунта: опыт и перспективы / Д. А. Сидоров, А. А. Куншин, Г. В. Буслаев [и др.] // Neftegaz.RU. – 2022. – № 12. – С. 88–92. – URL: https://magazine.neftegaz.ru/articles/arktika/761024-sistemytermostabilizatsii-grunta-opyt-i-perspektivy-/

32. Qin, Y. Wind-driven device for cooling permafrost / Y. Qin, T. Wang, W. Yuan // Nature Communications. – 2023. – Vol. 14. – Art. ID 7558. https://doi.org/10.1038/s41467-023-43375-z

33. Thermosyphon-assisted cooling system working in the moderate heat flux range / K. O. Ponomarev, G. V. Kuznetsov, E. G. Orlova, D. V. Feoktistov // Thermal Science and Engineering Progress. – 2022. – Vol. 32. – Art. ID 101330. https://doi.org/10.1016/j.tsep.2022.101330

34. Моделирование системы пассивного отвода тепла от шахты-хранилища исследовательского ядерного реактора ИВВ-2М при помощи термосифонов / С. М. Глухов, А. Д. Лёзов, Д. Е. Шумков [и др.] // Физика. Технологии. Инновации: cб. ст. VIII Междунар. молодеж. науч. конф. (Екатеринбург, 17–21 мая 2021 г.). – Екатеринбург: УрФУ, 2021. – С. 113–122.

35. Experimental investigation of the heat transfer characteristics, operating limits, and temperature distribution of a prototypically 3 m long two-phase closed thermosyphon for spent fuel pool passive cooling / S. I. C. Castro, M. Kirsch, R. Kulenovic, J. Starflinger // Experimental and Computational Multiphase Flow. – 2024. – Vol. 6. – P. 229–241. https://doi.org/10.1007/s42757-024-0193-2

36. Thermal performance improvement by rotating thermosyphon loop in rotor of an interior permanent magnet synchronous electric motor / P. S. Wu, M.-F. Hsieh, Y. E. Lu [et al.] // Inventions. – 2022. – Vol. 7, iss. 2. – P. 37. https://doi.org/10.3390/inventions7020037

37. Thermal performance of plate-type loop thermosyphon at sub-atmospheric pressures / V. Tsoi, S. W. Chang, K. F. Chiang, C. C. Huang // Applied Thermal Engineering. – 2011. – Vol. 31, iss. 14–15. – P. 2556–2567. https://doi.org/10.1016/j.applthermaleng.2011.04.021

38. Junior, A. Thermal performance of a novel flat thermosyphon for avionics thermal management / A. Junior, M. Mantelli // Energy Conversion and Management. – 2019. – Vol. 202. – Art. ID 112219. https://doi.org/10.1016/j.enconman.2019.112219

39. Optimization study on the performance of a thermosyphon-based radiative cooler / B. Yao, K. Zhang, J. Zhu, S. Wu // Indoor and Built Environment. – 2023. – Vol. 32, iss. 2. – P. 425–439. https://doi.org/10.1177/1420326X221117758

40. Bijarniya, J. P. Performance improvement of CO2 air conditioner by integrating photonic radiative cooler as subcooler or/and roof envelope / J. P. Bijarniya, J. Sarkar, P. Maiti // Energy Conversion and Management. – 2022. – Vol. 251, iss. 2. – Art. ID 115019. https://doi.org/10.1016/j.enconman.2021.115019

41. Principles of loop thermosyphon and its application in data center cooling systems: A review / D. Tao, X. Chen, H. Cao [et al.] // Renewable and Sustainable Energy Reviews. – 2021. – Vol. 150. – Art. ID 111389. https://doi.org/10.1016/j.rser.2021.111389

42. Hu, Y. Thermosyphon-cooled three-dimensional stacked heat sources / Y. Hu, Y. Joshi // IEEE Transactions on Components, Packaging and Manufacturing Technology. – 2021. – Vol. 11, iss. 10. – P. 1695–1702. https://doi.org/10.1109/TCPMT.2021.3078758

43. Thermal characteristics of a two-phase loop thermosyphon with micro-grooved structures inside the evaporator / Y. Hua, J. Qu, W. Yang [et al.] // International Journal of Heat and Mass Transfer. – 2024. – Vol. 224. – Art. ID 125357. https://doi.org/10.1016/j.ijheatmasstransfer.2024.125357

44. Khrustalev, D. Loop thermosyphons for cooling of electronics / D. Khrustalev // Eighteenth Annual IEEE Semiconductor Thermal Measurement and Management Symposium. Proceedings 2002 (Cat.No.02CH37311). – IEEE, 2002. – P. 145–150. https://doi.org/10.1109/STHERM.2002.991360


Рецензия

Просмотров: 20


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1561-8358 (Print)
ISSN 2524-244X (Online)