Analysis of two-phase thermosyphon design and creation technologies for cooling system applications
https://doi.org/10.29235/1561-8358-2025-70-4-320-335
Abstract
A brief analysis of current developments, research, and applications of two-phase thermosyphons in engineering is provided. The most relevant application of thermosyphons today is electronic cooling. (power and microelectronics). Other possibilities for using this heat exchange element were also considered: soil temperature stabilization, permafrost preservation, cooling of heat-loaded equipment, heat exchanger for air conditioning systems, nuclear industry. Working fluid selection, optimal filling factor of the device, heat transfer intensifying methods, and the thermosyphon design influence on its performance were examined in detail.
About the Authors
A. A. GasporovichBelarus
Aliona A. Gasporovich – Researcher
15, P. Brovka St., 220072, Minsk
M. A. Kuzmich
Belarus
Maxim A. Kuzmich – Researcher
15, P. Brovka St., 220072, Minsk
References
1. He Y., Hu C., Li H., Hu X., Tang D. Experimental investigation on air-cooling type loop thermosyphon thermal characteristic with serpentine tube heat exchanger. International Journal of Refrigeration, 2022, vol. 138, pp. 52–60. https://doi.org/10.1016/j.ijrefrig.2022.03.009
2. Liu Q., Fukuda K., Sutopo P. F. Experimental Study on Thermosyphon for Shipboard High-Power Electronics Cooling System. Heat Transfer Engineering, 2014, vol. 35, pp. 1077–1083. https://doi.org/10.1080/01457632.2013.863096
3. Yao M., Gan Y., Luo Q., Li R., Liu R., Feng J., Mao Y., Li Y. Experimental study on the effect of filling ratio on an R141b two-phase thermosyphon loop with a horizontal parallel tube evaporator. International Journal of Refrigeration, 2022, vol. 137, pp. 230–243. https://doi.org/10.1016/j.ijrefrig.2022.02.013
4. Zamanifard A., Wang C.-C. An experimental evaluation of the performance of a remote 2U loop thermosyphon. Applied Thermal Engineering, 2024, vol. 248, part B, art. ID 123243. https://doi.org/10.1016/j.applthermaleng.2024.123243
5. Yao H., Pu W., Wang J., Qin Y., Qiao L., Song N. A novel thermosyphon cooling applied to concentrated photovoltaicthermoelectric system for passive and efficient heat dissipation. Applied Thermal Engineering, 2024, vol. 236, part A, art. ID 121460. https://doi.org/10.1016/j.applthermaleng.2023.121460
6. Zhang T., Yan Z., Pei G., Zhu Q., Ji J. Experimental optimization on the volume-filling ratio of a loop thermosyphon photovoltaic/thermal system. Renewable Energy, 2019, vol. 143, pp. 233–242. https://doi.org/10.1016/j.renene.2019.05.014
7. Panse S. S., Kandlikar S. G. A thermosiphon loop for high heat flux removal using flow boiling of ethanol in OMM with taper. International Journal of Heat and Mass Transfer, 2017, vol. 106, pp. 546–557. https://doi.org/10.1016/j.ijheatmasstransfer.2016.09.020
8. Matsubara K., Matsudaira Y., Kourakata I. Thermosiphon loop thermal collector for low-temperature waste heat recovery. Applied Thermal Engineering, 2016, vol. 92, pp. 261–270. https://doi.org/10.1016/j.applthermaleng.2015.09.004
9. Vasiliev L. L., Vassiliev L. L., Jr., Rabetsky M. I., Grakovich L. P., Zhuravlyov A. S., Shapovalov A. V., Rodin A. V. Long horizontal vapordynamic thermosyphons for renewable energy sources. Heat Transfer Engineering, 2019, vol. 40, iss. 3–4, pp. 258–266. https://doi.org/10.1080/01457632.2018.1426252
10. Vasiliev L., Zhuravlyov A., Kuzmich M., Kulikouski V. Development and testing of a novel horizontal loop thermosyphon as a kW-class heat transfer device. Applied Thermal Engineering, 2022, vol. 200, art. ID 117682. https://doi.org/10.1016/j.applthermaleng.2021.117682
11. Vasiliev L. L., Zhuravlyov A. S., Kuzmich M. A., Kulikovskii V. K., Olekhnovich V. A. Loop thermosyphon for cooling heat-loaded electronics components. Journal of Engineering Physics and Thermophysics, 2023, vol. 96, no. 7, pp. 1708–1715. https://doi.org/10.1007/s10891-023-02840-8
12. Fisenko S. P. Film flow of the heat-transfer agent in a closed thermosyphon. Journal of Engineering Physics and Thermophysics, 2022, vol. 95, no. 6, pp. 1421–1425. https://doi.org/10.1007/s10891-022-02610-y
13. Moustaid M., Platel V., Guillet M., Reynes H., Buttay C. Modeling and test of a thermosyphon loop for the cooling of a megawatt-range power electronics converter. International Journal of Thermofluids, 2022, vol. 13, art. ID 100129. https://doi.org/10.1016/j.ijft.2021.100129
14. Marcinichen J. B., Armas G. S. R. B., Rouaze G., Thome J. R., Winston Zhang L. Air-Cooled Loop Thermosyphon Cooling System for High Heat Load CPUs–Part I: Design and Performance Simulation. IEEE Transaction Components, Packaging Manufacturing Technology, 2021, vol. 11, iss. 10, pp. 1679–1686. https://doi.org/10.1109/TCPMT.2021.3112080
15. Tang H., Tang Y., Wan Z., Li J., Yuan W., Lu L., Li Y., Tang K. Review of applications and developments of ultra-thin micro heat pipes for electronic cooling. Applied Energy, 2018, vol. 223, pp. 383–400. https://doi.org/10.1016/j.apenergy.2018.04.072
16. Cai Y., Hu X., Lu J., Li Y., Tang D., Hu C. Impact of working fluid properties on heat transfer and flow characteristics of two-phase loop thermosyphon with high filling ratios. International Journal of Heat and Mass Transfer, 2025, vol. 238, p. 126482. https://doi.org/10.2139/ssrn.4813552
17. Kalantarpour R., Vafai K. Enhancing heat transfer in thermosyphons: The role of self-rewetting nanofluids, and filling ratios for improved performance. International Journal of Heat and Mass Transfer, 2024, vol. 223, art. ID 125284. https://doi.org/10.1016/j.ijheatmasstransfer.2024.125284
18. Gupta S., Kumar M. Computational fluid dynamics: innovations in numerical techniques, multi-phase flow modeling, and prospects for sustainable energy applications. Journal of Sustainable Urban Futures, 2023, vol. 13, iss. 9, pp. 1–20.
19. Zhang M., Liu Z., Ma G. The experimental investigation on thermal performance of a flat two-phase thermosyphon. International Journal of Thermal Sciences, 2008, vol. 47, iss. 9, pp. 1195–1203. https://doi.org/10.1016/j.ijthermalsci.2007.10.004
20. Zhang M., Liu Z., Ma G. Numerical simulation and experimental verification of a flat two-phase thermosyphon. Energy Conversion and Management, 2009, vol. 50, pp. 1095–1100. https://doi.org/10.1016/j.enconman.2008.12.001
21. Ling L., Zhang Q., Yu Y., Liao S., Sha Z. Experimental study on the thermal characteristics of micro channel separate heat pipe respect to different filling ratio. Applied Thermal Engineering, 2016, vol. 102, pp. 375–382. https://doi.org/10.1016/j.applthermaleng.2016.03.016
22. Zhou X., Lv J., Cheng H., Fan G., Liu J. Experimental study on the influence of initial state parameters on the startup and heat transfer characteristics of separated heat pipe system. Annals of Nuclear Energy, 2024, vol. 208, art. ID 110810. https://doi.org/10.1016/j.anucene.2024.110810
23. Yin X., Hu J., Chi X., Li Y., Nan Z., Wang N. Experimental investigation of two-phase thermosyphon loop for passive containment cooling. Applied Thermal Engineering, 2021, vol. 184, art. ID 116403. https://doi.org/10.1016/j.applthermaleng.2020.116403
24. Sandeep K. S., Narendar G. Design and thermodynamic analysis of single-loop thermosyphon. Proceedings of the Second International Conference on Emerging Trends in Engineering (ICETE 2023). Advances in Engineering Research, 2023, pp. 1197–1207. https://doi.org/10.2991/978-94-6463-252-1_120
25. Younes H., Mao M., Sohel Murshed S. M., Lou D., Hong H., Peterson G. P. Nanofluids: key parameters to enhance thermal conductivity and its applications. Applied Thermal Engineering, 2022, vol. 207, art. ID 118202. https://doi.org/10.1016/j.applthermaleng.2022.118202
26. Fulpagare Y., Tsai D.-Y., Wang C.-C. Performance of two-phase loop thermosiphon with graphene nanofluid. Applied Thermal Engineering, 2022, vol. 200, art. ID 117714. https://doi.org/10.1016/j.applthermaleng.2021.117714
27. Kiseev V. M., Sazhin O. V. Experimental investigation of nanofluid boiling in thermosyphons. Technical Physics, 2023, vol. 93, iss. 10, pp. 1311–1322. https://doi.org/10.61011/TP.2023.10.57446.134-23
28. Khodabandeh R., Furberg R. Heat transfer, flow regime and instability of a nano- and micro-porous structure evaporator in a two-phase thermosyphon loop. International Journal of Thermal Sciences, 2010, vol. 49, iss. 7, pp. 1183–1192. https://doi.org/10.1016/j.ijthermalsci.2010.01.016
29. He Y., Hu C., Li H., Hu X., Tang D. Experimental investigation on air-cooling type loop thermosyphon thermal characteristic with serpentine tube heat exchanger. International Journal of Refrigeration, 2022, vol. 138, pp. 52–60. https://doi.org/10.1016/j.ijrefrig.2022.03.009
30. Wagner A. M. Review of Thermosyphon Applications. Final report ERDC/CRREL TR-14-1. Cold Regions Research and Engineering Laboratory (US), 2014. Available at: https://dot.alaska.gov/stwddes/research/assets/pdf/erdc-crrel-tr-14-1.pdf.
31. Sidorov D. A., Kunshin A. A., Buslaev G. V., Lavrik A. Ju., Lavrik A. Ju. Soil thermal stabilization systems: experience and prospects. Neftegaz.RU, 2022, no. 12, pp. 88–92. Available at: https://magazine.neftegaz.ru/articles/arktika/761024-sistemy-termostabilizatsii-grunta-opyt-i-perspektivy (in Russian).
32. Qin Y., Wang T., Yuan W. Wind-driven device for cooling permafrost. Nature Communications, 2023, vol. 14, art. ID 7558. https://doi.org/10.1038/s41467-023-43375-z
33. Ponomarev K. O., Kuznetsov G. V., Orlova E. G., Feoktistov D. V. Thermosyphon-assisted cooling system working in the moderate heat flux range. Thermal Science and Engineering Progress, 2022, vol. 32, art. ID 101330. https://doi.org/10.1016/j.tsep.2022.101330
34. Glukhov S. M., Lezov A. D., Shumkov D. E., Klimova V. A., Tashlykov O. L. Simulation of the passive heat removal system from the storage shaft of the IVV-2M research nuclear reactor using thermosiphons. Fizika. Tekhnologii. Innovatsii: sbornik statei VIII Mezhdunarodnoi molodezhnoi nauchnoi konferentsii (Ekaterinburg, 17–21 maya 2021 g.) [Physics. Technologies. Innovations: Collection of articles of the VIII International Youth Scientific Conference (Yekaterinburg, May 17–21, 2021]. Yekaterinburg, 2021, pp. 113–122 (in Russian).
35. Castro S. I. C., Kirsch M., Kulenovic R., Starflinger J. Experimental investigation of the heat transfer characteristics, operating limits, and temperature distribution of a prototypically 3 m long two-phase closed thermosyphon for spent fuel pool passive cooling. Experimental and Computational Multiphase Flow, 2024, vol. 6, pp. 229–241. https://doi.org/10.1007/s42757-024-0193-2
36. Wu P. S., Hsieh M.-F., Lu Y. E., Cai W. L., Chang S. W. Thermal performance improvement by rotating thermosyphon loop in rotor of an interior permanent magnet synchronous electric motor. Inventions, 2022, vol. 7, iss. 2, p. 37. https://doi.org/10.3390/inventions7020037
37. Tsoi V., Chang S. W., Chiang K. F., Huang C. C. Thermal performance of plate-type loop thermosyphon at subatmospheric pressures. Applied Thermal Engineering, 2011, vol. 31, iss. 14–15, pp. 2556–2567. https://doi.org/10.1016/j.applthermaleng.2011.04.021
38. Junior A., Mantelli M. Thermal performance of a novel flat thermosyphon for avionics thermal management. Energy Conversion and Management, 2019, vol. 202, art. ID 112219. https://doi.org/10.1016/j.enconman.2019.112219
39. Yao B., Zhang K., Zhu J., Wu S. Optimization study on the performance of a thermosyphon-based radiative cooler. Indoor and Built Environment, 2023, vol. 32, iss. 2, pp. 425–439. https://doi.org/10.1177/1420326X221117758
40. Prakash Bijarniya J., Sarkar J., Maiti P. Performance improvement of CO2 air conditioner by integrating photonic radiative cooler as sub-cooler or/and roof envelope. Energy Conversion and Management, 2022, vol. 251, iss. 2, art. ID 115019. https://doi.org/10.1016/j.enconman.2021.115019
41. Ding T., Chen X., Cao H., He Z., Wang J., Li Z. Principles of loop thermosyphon and its application in data center cooling systems: A review. Renewable and Sustainable Energy Reviews, 2021, vol. 150, art. ID 111389. https://doi.org/10.1016/j.rser.2021.111389
42. Hu Y., Joshi Y. Thermosyphon-cooled three-dimensional stacked heat sources. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2021, vol. 11, iss. 10, pp. 1695–1702. https://doi.org/10.1109/TCPMT.2021.3078758
43. Hua Y., Qu J., Yang W., Zhang T., Zhao Y. Thermal characteristics of a two-phase loop thermosyphon with microgrooved structures inside the evaporator. International Journal of Heat and Mass Transfer, 2024, vol. 224, art. ID 125357. https://doi.org/10.1016/j.ijheatmasstransfer.2024.125357
44. Khrustalev D. Loop thermosyphons for cooling of electronics. Eighteenth Annual IEEE Semiconductor Thermal Measurement and Management Symposium. Proceedings 2002 (Cat.No.02CH37311). IEEE, 2002, pp. 145–150. https://doi.org/10.1109/STHERM.2002.991360






























