Preview

Proceedings of the National Academy of Sciences of Belarus. Physical-technical series

Advanced search

MAGNETIC AMORPHOUS MICROWIRES AS EMBEDDED STRESS SENSORS IN FUNCTIONAL MATERIALS

Abstract

Considerable efforts have been made to develop non-destructive methods for testing internal stress/strain condition of polymer composite materials. A new method of monitoring internal stresses is presented. The method can be referred to as embedded sensing technique, where the sensing element is a glass-coated ferromagnetic microwire with a specific magnetic anisotropy. With a diameter 10–100 microns, the microwire does not affect the structural integrity. When the microwire is remagnetized the sharp voltage is induced which is characterized by high frequency harmonics. The amplitude of these harmonics sensitively depends on various stresses. The experimental results are analyzed using simple magnetostatic models.

About the Authors

M. M. SALEM
National University of Science and Technology MISIS
Russian Federation


M. G. NEMATOV
National University of Science and Technology MISIS
Russian Federation


A. UDDIN
National University of Science and Technology MISIS
Russian Federation


S. V. PODGORNAYA
National University of Science and Technology MISIS
Russian Federation


L. V. PANINA
National University of Science and Technology MISIS; Institute for Design Problems in Microelectronics RAS
Russian Federation


A. T. MORCHENKO
National University of Science and Technology MISIS
Russian Federation


References

1. Chiriac, H. Amorphous Glass-Covered Magnetic Wires: Preparation, Properties / H. Chiriac, T.-A. Ovari // Applications Progr. Mater. Sci. – 1996. – Vol. 40. – P. 333–407.

2. Zhukov A. Magnetic properties and applications of ferromagnetic Мicrowires with amorphous and nanocrystalline structure / A. Zhukov, V. Zhukova. – Nova Science Publishers, New York. – 2009.

3. On the state-of-the-art in magnetic Мicrowires and expected trends for scientific and technological studies / M. Vazquez [et al.] // Phys. Status Solidi A. – 2011. – Vol. 208. – P. 493–501.

4. Panina, L. Magneto-impedance effect in amorphous wires / L. Panina, K. Mohri // Appl. Phys. Lett. – 1994. – Vol. 65. – P. 1189–1191.

5. Knobel, M. Giant magnetoimpedance: concepts and recent progress / M. Knobel, K. R. Pirota // J. Magn. Magn. Mater. – 2002. – Vol. 242/245. – P. 33–40.

6. Tannous, C. Giant magneto-impedance and its applications / C. Tannous, J. Gieraltowski // Journal of Materials Science: Materials in Electronics. – 2004. – Vol. 15. – No 3. – P. 125–133.

7. Panina, L. V. Stress effect on magneto-impedance in amorphous wires at GHz frequencies and application to stresstuneable Мicrowave composite materials / L. V. Panina, S. I. Sandacci, D. P. Makhnovskiy // J. Appl. Phys. – 2005. – Vol. 97. – P. 013701–6.

8. Amorphous wire and CMOS IC-based sensitive Мicromagnetic sensors utilizing magnetoimpedance and stress-impedance (SI) effects / K. Mohri [et al.] // IEEE Trans. Magn. – 2002. – Vol. 38. –No. 5. – P. 3063–3068.

9. Super МI Sensor: Recent Advances of Amorphous Wire and CMOS-IC Magneto-Impedance Sensor / K. Mohri [et al.] // J. Nanoscience and Nanotechnology. – 2012. – Vol.12. – P. 7491– 7495.

10. Fernando, G. F. Fibre optic sensor systems for monitoring composite structures / G. F. Fernando // Reinf. Plast. – 2005. – Vol. 49. – P. 41–49.

11. Peters, K. Polymer optical fiber sensors – a review / K. Peters // Smart Mater. Struct. – 2011. –Vol. 20. – P. 013002–18.

12. Torrents, J. M. Impedance spectra of fiber-reinforced cement-based composites. A modeling approach / J. M. Torrents, T. O. Mason, E. J. Garboczi // Cem. Concr. Research. – 2000. – Vol. 30. – P. 585–592.

13. Intrinsic conductivity of short conductive fibers in composites by impedance spectroscopy / A. D. Hixson [et al.] // J. Electroceramics. – 2001. – Vol. 7. – P. 189–195.

14. Electrical impedance spectra to monitor damage during tensile loading of cement composites / A. Peled [et al.] // ACI Maters. Journal. – 2001. – Vol. 98. – P. 313–322.

15. Analysis of the impedance spectra of short conductive fiber reinforced composites / J. M. Torrents [et al.] // J. Mater. Sci. – 2001. – Vol. 36. – P. 4003–12.

16. . Hou, T. C Electrical impedance tomographic methods for sensing strain fields and crack damage in cementitious structures / T. C. Hou, J. P. Lynch // J. Intel. Mater. Syst. Struct. – 2009. – Vol. 20. – P. 1363–1379.

17. Magnetostrictive properties of epoxy resins modified with Terfenol-D particles for detection of internal stress in CFRP. Part 1: materials and process / M. Kubicka [et al.] // J. Mater. Sci. – 2012. –Vol. 47. – P. 5752–5759.

18. Magnetostrictive properties of epoxy resins modified with Terfenol-D particles for detection of internal stress in CFRP. Part 2: evaluation of stress detection / M. Kubicka [et al.] // J. Mater. Sci. – 2013. – Vol. 48. – P. 6578–6584.

19. Field-dependent surface impedance tensor in amorphous wires with two types of magnetic anisotropy: helical and circumferential / D. P. Makhnovskiy [et al.] // Phys Rev B. – 2001. – Vol. 63. –P. 144424–144441.

20. Magnetostriction of Co–Fe-Based Amorphous Soft Magnetic Мicrowires / A. Zhukov [et al.] // Journal of Electronic Materials. –2015. – Vol. 44. – P. 1–9.

21. Valve-like behaviour of the magnetoimpedance in the GHz range / S. Sandacci [et al.] // J. Magn. Magn. Mat. – 2004. – Vol. 272. – P. 1855–1857.

22. Stress effect on magneto-impedance (МI) in amorphous wires at GHz frequencies and application to stress-tuneable Мicrowave composite materials / L. V. Panina, [et al.] // J. Appl. Phys. – 2005. – Vol. 97. – P. 013701–013703.


Review

Views: 755


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-8358 (Print)
ISSN 2524-244X (Online)