Влияние быстрого термического отжига на механические свойства субмикроструктур на основе пленок никеля и хрома
https://doi.org/10.29235/1561-8358-2023-68-4-271-278
Аннотация
Представлены результаты исследования фазового состава, морфологии поверхности, размера зерна и механических свойств субмикроструктур на основе хрома и никеля до и после быстрой термической обработки при температуре от 200 до 550 °С. Морфологию поверхности и размер зерна определяли с помощью атомно-сило- вой микроскопии, механические свойства – методом наноиндентирования. Быстрая термическая обработка субмикроструктур на основе никеля и хрома существенно влияет на изменение фазового состава, морфологии поверхности, размера зерна и свойств. Происходит формирование силицидов (по диффузионному механизму) и новых фаз: фаза CrSi2 формируется при температуре 350 °С и выше, фаза Ni2Si – при 300 °С, а фаза NiSi – при 350 °С и выше. При изменении фазового состава происходит рост размера зерна. В диапазонах БТО от 200 до 300 °С и от 450 до 550 °С для субмикроструктур на основе хрома корреляция микротвердости и размера зерна выполняется согласно закону Холла–Петча – микротвердость растет с уменьшением размера зерна. Для субмикроструктур на основе никеля закон Холла–Петча выполняется в диапазоне температур от 200 до 300 °С и от 500 до 550 °С. В диапазоне температур 300–450 °С для субмикроструктур на основе хрома и 300–500 °С для субмикроструктур на
основе никеля микротвердость снижается с уменьшением размера зерна и наоборот, то есть происходит «отрицательный эффект Холла–Петча». Такой эффект связан с фазовыми переходами Cr → CrSi2 и Ni → Ni2Si → NiSi, реструктуризацией субмикроструктур из-за диффузионного механизма, морфологической перестройки вакансионных дефектов и отжи гом точечных дефектов внутри зерен, а также соответствующей реконструкцией межзеренных границ. Рассмотренные субмикроструктуры на основе хрома и никеля можно применять в микроэлектронике для диодов Шоттки, омических контактов и затворов.
Ключевые слова
Об авторах
В. А. ЛапицкаяБеларусь
Лапицкая Василина Александровна – кандидат технических наук, доцент, старший научный сотрудник
ул. П. Бровки, 15, 220072, Минск
Р. Э. Трухан
Беларусь
Трухан Руслан Эдуардович – младший научный сотрудник
ул. П. Бровки, 15, 220072, Минск
А. В. Хабарова
Беларусь
Хабарова Анастасия Викторовна – младший научный сотрудник
ул. П. Бровки, 15, 220072, Минск
Т. А. Кузнецова
Россия
Кузнецова Татьяна Анатольевна – кандидат технических наук, доцент
ул. П. Бровки, 15, 220072, Минск
С. А. Чижик
Беларусь
Чижик Сергей Антонович – академик Национальной академии наук Беларуси, доктор технических наук, профессор, заведующий отделением теплообмена и механики микро- и наноразмерных систем
ул. П. Бровки, 15, 220072, Минск
Я. А. Соловьёв
Беларусь
Соловьёв Ярослав Александрович – кандидат технических наук, доцент, начальник научно-технического центра – заведующий лабораторией
ул. Казинца, 121А, 220108, Минск
В. А. Пилипенко
Беларусь
ул. Казинца, 121А, 220108, Минск
К. С. Люцко
Беларусь
Люцко Карина Сергеевна – старший преподаватель
пр. Независимости, 65, 220013, Минск
А. А. Насевич
Беларусь
Насевич Анастасия Александровна – магистрант
пр. Независимости, 65, 220013, Минск
Ю Гуанбин
Китай
Гуанбин Ю – доктор технических наук, профессор
92, Xida Str., Наньган, 150001, Харбин
Список литературы
1. Shishido T., Okada S., Ishizawa Y., Kudou K., Iizumi K., Sawada Y., Horiuchi H. [et al.]. Molten metal flux growth and properties of CrSi2. Journal of Alloys and Compounds, 2004, vol. 383, iss. 1–2, pp. 319–321. https://doi.org/10.1016/j.jallcom.2004.04.037
2. Murarka Sh. P. Silicides for VLIC. Moscow, Mir Publ., 1986. 176 p. (in Russian).
3. Kumar K. S. Intermetallics: Silicides. Encyclopedia of Materials: Science and Technology. 2nd ed. Elsevier, 2001, pp. 4243–4246. https://doi.org/10.1016/B0-08-043152-6/00744-0
4. Zhu J., Barbier D., Mayet L., Gavand M., Chaussemy G. Interstitial chromium behaviour in silicon during rapid thermal annealing. Applied Surface Science, 1989, vol. 36, iss. 1–4, pp. 413–420. https://doi.org/10.1016/0169-4332(89)90937-9
5. D’Anna E., Leggieri G., Luches A., Majni G., Ottaviani G. Chromium silicide formation under pulsed heat flow. Thin Solid Films, 1986, vol. 136, iss. 1, pp. 93–104. https://doi.org/10.1016/0040-6090(86)90112-4
6. Liu C. M., Liu W. L., Hsieh S. H., Tsai T. K., Chen W. J. Interfacial reactions of electroless nickel thin films on silicon. Applied Surface Science, 2005, vol. 243, iss.1–4, pp. 259–264. https://doi.org/10.1016/j.apsusc.2004.09.110
7. Deneb Menda U., Özdemir O., Tatar B., Ürgen M., Kutlu K. Transport and storage properties of CrSi2/Si junctions made using the CAPVD technique. Materials Science in Semiconductor Processing, 2010, vol. 13, iss. 4, pp. 257–266. https:// doi.org/10.1016/j.mssp.2010.12.002
8. Zhao F. F., Zheng J. Z., Shen Z. X., Osipowicz T., Gao W. Z., Chan L. H. Thermal stability study of NiSi and NiSi2 thin films. Microelectronic Engineering, 2004, vol. 71, iss. 1, pp. 104–111. https://doi.org/10.1016/j.mee.2003.08.010
9. Okubo K., Tsuchiya Y., Nakatsuka O., Sakai A., Zaima S., Yasuda Y. Influence of structural variation of Ni silicide thin films on electrical property for contact materials. Japanese Journal of Applied Physics, 2004, vol. 43, pp. 1896. https://doi.org/10.1143/JJAP.43.1896
10. Waidmann S., Kahlert V., Streck C., Press P., Kammler T., Dittmar K., Rinderknecht J. Tuning nickel silicide properties using a lamp based RTA, a heat conduction based RTA or a furnace anneal. Microelectronic Engineering, 2006, vol. 83, iss. 11–12, pp. 2282–2286. https://doi.org/10.1016/j.mee.2006.10.020
11. Ren B., Lu D. H., Zhou R., Ji D. P., Hu M. Y., Feng J. First principles study of stability, mechanical, and electronic properties of chromium silicides. Chinese Physics B, 2018, vol. 27, art. ID 107102. http://dx.doi.org/10.1088/1674-1056/27/10/107102
12. Wang L., Gao Y., Xue Q. A comparative study on the tribological behavior of nanocrystalline nickel and cobalt coatings correlated with grain size and phase structure. Materials Chemistry and Physics, 2006, vol. 99, iss. 1, pp. 96–103. https://doi.org/10.1016/j.matchemphys.2005.10.014
13. Laptev A. A., Belomyttsev M. Yu., Laptev A. I. Mechanical properties of nickel-silicon alloys. Izvestiya vysshikh uchebnykh zavedenii. Chernaya metallurgiya = Izvestiya. Ferrous Metallurgy, 2014, vol. 57, no. 5, pp. 47–50 (in Russian) https://doi.org/10.17073/0368-0797-2014-5-47-50
14. Chu F., Lei M., Maloy S.A., Petrovic J. J., Mitchell T. E. Elastic properties of C40 transition metal disilicides. Acta Materialia, 1996, vol. 44, iss. 8, pp. 3035–3048. https://doi.org/10.1016/1359-6454(95)00442-4
15. Pan Y. Structural Prediction and Overall Performances of CrSi2 Disilicides: DFT Investigations. ACS Sustainable Chemistry & Engineering, 2020, vol. 8, iss. 29, pp. 11024–11030. https://doi.org/10.1021/acssuschemeng.0c04737
16. Golovin Yu. I. Nanoindentation and Its Capabilities. Moscow, Mashinostroenie Publ., 2009. 312 p. (in Russian).
17. Kuznetsova T., Lapitskaya V., Solovjov J., Chizhik S., Pilipenko V., Aizikovich S. Properties of CrSi2 Layers Obtained by Rapid Heat Treatment of Cr Film on Silicon. Nanomaterials, 2021, vol. 11, iss. 7, art. ID 1734. https://doi.org/10.3390/nano11071734
18. Lapitskaya V., Trukhan R., Kuznetsova T., Solovjov J., Chizhik S., Pilipenko V., Liutsko K. [et al.]. Microstructure and Properties of Thin-Film Submicrostructures Obtained by Rapid Thermal Treatment of Nickel Films on Silicon. Surfaces, 2024, vol. 7, iss. 2, pp. 196–207. https://doi.org/10.3390/surfaces7020013
19. Gül F. Addressing the sneak-path problem in crossbar RRAM devices using memristor-based one Schottky diode-one resistor array. Results Physics, 2019, vol. 12, pp. 1091–1096. https://doi.org/10.1016/j.rinp.2018.12.092
20. Galkin N. G., Astashynski V. M., Chusovitin E. A., Galkin K. N., Dergacheva T. A., Kuzmitski A. M., Kostyukevich E. A. Ultra high vacuum growth of CrSi2 and β-FeSi2 nanoislands and Si top layers on the plasma modified monocrystalline silicon surfaces. Physics Procedia, 2011, vol. 11, pp. 39–42. https://doi.org/10.1016/j.phpro.2011.01.009
21. Adusumilli P., Seidman D. N., Murray C. E. Silicide-phase evolution and platinum redistribution during silicidation of Ni0.95Pt0.05/Si(100) specimens. Journal of Applied Physics, 2012, vol. 112, iss. 6, p. 11. http://doi.org/10.1063/1.4751023
22. Peter A. P., Meersschaut J., Richard O., Moussa A., Steenbergen J., Schaekers M., Adelmann C. Phase formation and morphology of nickel silicide thin films synthesized by catalyzed chemical vapor reaction of nickel with silane. Chemistry of Materials, 2015, vol. 27, iss. 1, pp. 245–254. http://doi.org/10.1021/cm503810p
23. Meyers М. А., Mishra A., Benson D. J. Mechanical properties of nanocrystalline materials. Progress in Materials Science, 2006, vol. 51, pp. 427–556. https://doi.org/10.1016/j.pmatsci.2005.08.003
24. Suzdalev I. P. Nanotechnology. Physicochemistry of Nanoclusters, Nanostructures and Nanomaterials. Moscow, KomKniga Publ., 2006. 592 p. (in Russian).
25. Pilipenko V. A., Solovjov J. A., Gaiduk P. I. Nickel silicide formation with rapid thermal treatment in the heat balance mode. Doklady Natsional’noi akademii nauk Belarusi = Doklady of the National Academy of Sciences of Belarus, 2021, vol. 65, no. 1, pp. 111–118 (in Russian). https://doi.org/10.29235/1561-8323-2021-65-1-111-118
26. Solovjov J. A., Pilipenko V. A., Gaiduk P. I. Structure and morphology of CrSi2 layers formed by rapid thermal treatment. Doklady BGUIR, 2020, vol. 18, no. 4, pp. 71–79 (in Russian). https://doi.org/10.35596/1729-7648-2020-18-4-71-79