Preview

Proceedings of the National Academy of Sciences of Belarus. Physical-technical series

Advanced search
Vol 65, No 4 (2020)
View or download the full issue PDF (Russian)
https://doi.org/10.29235/1561-8358-2020-65-4

MATERIALS SCIENCES AND ENGINEERING, METALLURGY 

404–412 491
Abstract
In order to determine the optimal values of technological factors for electromagnetic hardening process (EMHP), an experimental study of the process of applying ferromagnetic Fe – 2 % V powder coating on 30ХГС (GOST 4543- 71) steel parts was conducted. The process productivity and coating continuity were selected as the target parameters for the EMHP optimization. By applying the experimental design method, based on 5-factor central composite rotatable uniform plan, we have created stochastic models, expressed in regression functions of the second order. It has been determined that the magnetic induction value in the working gap is the most significant technological factor, affecting both target parameters. With the increasing induction magnitude the process productivity and the coating continuity increase non-linearly until the maximum limit value, which was attributed to the forming of current-conductive chains in the working gap, that have varying electrical conductivity and different directions relative to the lines of magnetic field forces. In order to determine the optimal EMHP mode we have solved the problems of finding maximums for greatest productivity and coating continuity within the constraints of the studied factor range. The discovered EMHP-modes, optimal for each separate parameter, coincide only in the value of the magnetic induction and the discharge density. The optimal values for the other control factors belong to different areas of factor range for different optimization parameters. To determine the EMHP modes, balanced against the both parameters, the problem of multicriteria optimization was solved. The obtained solution reveals that the density of discharge currents produces the biggest impact on the process productivity and the coating continuity within the balanced modes. At the same time the high continuity of the coating is achieved by the supplementing increase of peripheral speed of the processed workpiece, which leads to evener distribution of the intensively supplied mass of the ferromagnetic powder on the treated surface. The recommended technological modes of EMHP have been determined, based on the generalized optimality criteria.
413–421 559
Abstract
The effect of duration and annealing temperature in the range of 400–800 °C on the thermokinetic EMF value in titanium nickelide, the composition of which is close to the equi-atomic one, at a reverse phase transition was investigated. Thermokinetic EMF was measured directly using a digital millivoltmeter MNIPI V7-72. The phase and elemental composition of the alloy and the kinetics of thermoelastic phase transformations have been checked by X-ray diffraction and calorimetric studies, and X-ray microanalysis. Annealing at temperatures of 500 and 800 °C leads to an increase in the thermokinetic EMF value from 0.22 to 0.25 mV. Removal of the oxide layer from the sample surface annealed at 700 °C for 0.5 h leads to an increase in the thermokinetic EMF value from 0.22 to 0.26 mV for the 1-st thermal cycle. It was found that thermal cycling causes a decrease in the thermokinetic EMF values down to 0.98 mV for the 20th thermal cycle for the samples without an oxide layer and to 0.3 mV for the samples with an oxide layer, respectively. With the increase in annealing time up to 20 h at 700 °C, the decrease in the thermokinetic emf value to 0.16 mV was observed. The thermokinetic EMF value after heat treatment is associated with changes in the physical and mechanical properties of the alloy and characterized by a shift of the characteristic temperatures of the phase transition. The research results are important for understanding the physics of thermoelectric phenomena in shape memory alloys during nonstationary heating and can be used both to control the homogeneity of their physical and mechanical properties and to design smart actuators and sensors, mechanisms of control systems.

MECHANICAL ENGINEERING AND MECHANICS 

422–432 542
Abstract
On the basis of technical and economic analysis of the properties of relations between design and technological solutions, a method for the integral assessment of production manufacturability by combining individual manufacturability coefficients at different stages of the product life cycle is suggested. Separate coefficients take into account the influence degree of various constituent stages on the labor intensity of production and maintenance, repair and disposal of the product structure. Design and technological solutions in design systems imply the use of properties such as reflexivity, symmetry and transitivity. As a result, it is proposed to understand the properties set of the product design that determine its adaptability to achieve optimal costs in production and disposal for specified quality indicators and work conditions. A list of manufacturability coefficients of manufacturing a product design has been determined, including coefficients of purchase, repeatability of details and connections, material hardness, borrowing, typing, precision, roughness, mass. An examination of the effectiveness assessment the use tools, equipment and other objects of the technological environment at the stages design and technological production preparation is formalized. The examination includes an analysis of the frequency and duration of the meeting of structural parts elements and the tools state at the stages of their manufacture, operation and disposal.
433–444 444
Abstract
A method of computer prediction of the size of metal grains, their disorientation, grain boundaries and dislocation density, depending on the modes of cross-wedge rolling, is considered. The regularities of the formation of the parameters of the metal structure depending on the stress state are revealed by methods of computer simulation. The stress state is described by two parameters: the average stress and the parameter of the third invariant of the stress deviator. The effect of the stress state in the deformation zone on the metal structure parameters was determined for the first time. The new method allows improvement of the quality of products by computer optimization of rolling modes. The results of determining the metal structure and parameters of the stress-strain state in the deformation zone during hot rolling of the water pump shaft of steel 45 are presented. The verification and analysis of the data of virtual experiments on the formation of the structure of structural steels in the processes of cross-wedge rolling are carried out. To analyze the output data of the simulation, the parameters for predicting the calculation of grain boundaries and grain size were used. The created computer model for predicting the characteristics of metal structures, depending on the modes of plastic deformation, provides, at minimal cost and without carrying out field experiments, finding the optimal thermodynamic and stress-strain modes of plastic flow of metal, which guarantee the highest operational properties of the products obtained.
445–452 441
Abstract
In the article a cycloid internal engagement of gears that form an eccentric gearing, is considered. This engagement is investigated in point of insensitivity to assembly error. Only one type of assembly error – error of center distance i. e. eccentricity – is considered. It is expanded that workability of gearing with center distance error is provided on the assumption of decrease of diameter of roller that acts as central gear tooth. Roller diameter decrease and center distance error lead to breach of condition of conjugation of gears of eccentric gearing that in turn governs the output member rotation error. IThe output member and rotation transmission mechanism are not considered. Thus output member rotation error is equated to rotation error of eccentric gearing satellite. The influence of tooth profile on rotation error of eccentric gearing satellite is estimated when center distance error. On the base of matrix kinematic the methodology that takes in account the multiple-tooth contact is worked out. On basis of the developed methodology the research of influence of satellite tooth profiles formed on the base of shortened and extended epicycloids on rotation error is carried out. It is determined that in the eccentric gearing the use of satellite tooth profiles, formed on the base of extended epicycloid, makes it possible to decrease the rotation error. At that makes possible the operation of eccentric gearing in general manufacturing settings. Thus, the possibility of extending of eccentric gearing application fields to driving devices with higher requirements to overall sizes, mass, as well as cost, is come.
453–463 488
Abstract
The article presents the results of a study of the process of material grinding in roller aggregates with various kinematic features. As the object of research, the design of a vibroroller unit is selected, which has great prospects for use in production. A characteristic feature of this unit is a significant influence on the grinding process of inertia forces. As the main method of research in relation to the movement of the working bodies of the roller and vibroroller shredder and the crushed material, a method of modeling is adopted. It is presented an approximate analysis of the interaction of the crushed material in roll units with rolls. The crushed material is modeled by a set of horizontal elementary layers. At the first stage, the material is crushed in rolls with constant kinematic parameters. Analytical dependencies of the roll pressure on the material are established. At the second stage, the grinding of materials in a vibroroller shredder is considered. A distinctive feature of the vibroroller shredder is the presence of an eccentrically installed roll. The variant is presented when the eccentric performs a curvilinear translational motion, and the roll performs harmonic fluctuation (vibrations) along the coordinate axes with an amplitude of e. The resulting inertia forces and oscillatory motions of the roll are considered. The analysis of the total force in the unit under consideration, which makes it possible to implement crushing-shear and vibration effects on the crushed material, is carried out. The force interaction of the roll with the material is described by two systems of forces: the elastic forces resulting from the contraction of the model layers according to Hooke’s law, and the forces caused by the vibration of the roll (inertia forces). The results obtained are of practical importance in the design of roller units and vibration equipment, as well as for the analysis of the operation of such designs of grinders.

POWER ENGINEERING, HEAT AND MASS TRANSFER 

464–475 487
Abstract
Methods for processing experimental data based on generalized variables of the drying process, which characterize the most general patterns of drying in a period of decreasing speed, are considered. A method for processing experimental data based on the expanded level of drying kinetics is presented, which allows obtaining all dependencies for calculating the main parameters of the drying process. Equations are given for determining the densities of heat fluxes, the intensity of moisture evaporation, the temperature of the material, and the duration of drying for the period of falling speed. A dependence is given for calculating the Rebinder number, which establishes a relationship between moisture exchange and heat exchange for the second drying period. The values of all the coefficients in the equation for the Nusselt heat transfer criterion, which are necessary for determining the heat transfer coefficients, have been established. Calculations of the heat transfer coefficient for a number of modes of natural leather drying are presented. On the basis of the method for calculating the drying kinetics developed by B.S. Sazhin, an equation was established to determine the drying time of leather, which describes the entire drying process, including both drying periods. This method of calculating the kinetics of drying contains a minimum number of coefficients determined empirically, which reduces the amount of work at processing these experiments and the number of necessary experiments. The main constants in the criterial heat transfer equation for determining the heat transfer coefficient have been determined. Verification of the reliability of all obtained equations and comparison of the calculated and experimental values for all parameters of the drying kinetics are given. The obtained results of the study of drying natural leathers make it possible to control the technological process, preventing overdrying of the leather, disturbing the temperature regime, which leads to a reduction in energy costs for drying.
476–486 493
Abstract

Evaluation of the effectiveness of fire extinguishing by jet systems of powder fire extinguishing in conditions of non-stationary heat exchange processes and heterogeneous inhibition of active flame centers by powder particles was the aim of the work. The theoretical dependence of the amount of heat, absorbed by the particles of fire extinguishing powder, and the reaction rate of heterogeneous active centers of flame, inhibiting them, in non-stationary conditions of heat transfer, as well as inhibition reaction for fire extinguishing ink jet systems were obtained. The extinguishing of a flame with a fire extinguishing powder under non-stationary conditions is more effective, the smaller is the effective size of the powder particles, the longer is their stay in the combustion zone, and the shorter are the characteristic times of heat transfer and inhibition reaction. Comparison of the estimates of the characteristic duration of heat transfer and inhibition reaction for widely used fire extinguishing powders has shown a large inertia of the thermal mechanism of fire extinguishing, which greatly reduces its effectiveness at high speeds of powder particles in the combustion zone.

RADIOELECTRONICS AND INSTRUMENT-MAKING 

487–495 628
Abstract

The metrological problems of measuring the physic and mechanical characteristics of materials by dynamic indentation are considered. It is shown that the estimation of measurement error demanding the creation of the reference blocks is ineffective due to the wide variety of controlled materials and a wide range of changes in their properties. A technique has been developed for evaluating the accuracy of measurements based on the errors of individual parameters included in the calculation equation, i.e. by determining the error of indirect measurements. The technique is based on the estimation of the boundaries of the random error of the measured characteristics of the material and the non-excluded systematic errors of the parameters that are used for the calculations of needed characteristics. The results of experimental studies are presented, indicating that due to the different character of the dependencies of hardness and elastic modulus, the error in measuring the elastic modulus exceeds the error in measuring hardness. In addition, it was found that the error in measuring the characteristics of materials by the dynamic indentation method exceeds the measurement error by the static indentation method and can be reduced by increasing the accuracy of the equipment used for the registration of impact process. The obtained values of the physic and mechanical characteristics of the materials and the values of the measurement error show that the dynamic indentation method can effectively solve the problem of non-destructive testing of hardness, elastic modulus, and strain hardening exponent of metals and products with an appropriate error.

DIAGNOSTICS AND SAFETY OF TECHNICAL AND ENVIRONMENT SYSTEMS 

496–505 612
Abstract

A modern NPP is equipped by containment to hold radioactive substances and ionizing radiation bounded as design margins prescribe. Hydrogen mitigation system is used to protect containment against hydrogen fire and detonation. The system includes a scope of passive autocatalitic recombiners. Hydrogen is transformed into water, passing through said recombiners. The reaction occurs on catalyst surface. The main catalyst material is a palladium doped platinum. Hydrogen mitigation system parameters during severe accident are of interest. Wise admitted for NPP full scale tests are impossible, so the main analysis are calculations. Recombiner consists of catalytic block and stuck. The stuck provides reagents feeding and products evacuation enhancing natural convection transport. A model for calculations is suggested for recombiner with a plate-type catalyst block. The two free parameters of the model are chemical reaction intensity on catalyst and unit drag. Said parameters are estimated experimental data based on. Passive autocatalitic recombiner characteritics during severe ac- cident on AES-2006 NPP are calculated. The unit capacity is found not less that specification points. Catalyst temperatures, even the mean one, are above 500 °С, exhaust jet temperature exceeds 150 °С. Hydrogen content is high in the jet. Capacity increases linearly with hydrogen concentration at the unit entrance. Atmospheric temperature influence is low. Hydrogen mitigation system overall capacity is constant for uniform or not uniform hydrogen distribution in the containment. The calculated data may be used for recombiner work estimation during accident on AES-2006 NPP.

INFORMATION TECHNOLOGIES AND SYSTEMS 

506–512 488
Abstract
Possibility of creation of effective system, which is intended for exposure of tracks of editing in digital phonograms and is built on the basis of neuron networks of the deep learning, is experimentally proven. Sense of experiment consisted in research of ability of the systems on the basis of such networks to expose pauses with tracks of editing. The experimental array of data is created in a voice editor from phonograms written on the different apparatus of the digital audio recording (at frequency of discretisation 44,1 kHz). A preselection of pauses was produced from it, having duration from 100 мs to a few seconds. From 1000 selected pauses the array of fragments of pauses is formed in the automatic (computer) mode, from which the arrays of fragments of pauses of different duration are generated by a dimension about 100 000. For forming of array of fragments of pauses with editing, the chosen pauses were divided into casual character parts in arbitrary correlation. Afterwards, the new pauses were created from it with the fixed place of editing. The general array of all fragments of pauses was broken into training and test arrays. The maximum efficiency, achieved on a test array in the process of educating, was determined. In general case this efficiency is determined by the maximum size of probability of correct classification of fragments with editing and fragments without editing. Scientifically reasonable methodology of exposure of signs of editing in digital phonograms is offered on the basis of neuron networks of the deep learning. The conducted experiments showed that the construction of the effective system is possible for the exposure of such tracks. Further development of methodology must be directed to find the ways to increase the probability of correct binary classification of investigated pauses.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-8358 (Print)
ISSN 2524-244X (Online)