MATERIALS SCIENCES AND ENGINEERING, METALLURGY
The article is devoted to the investigation of potential defects that can appear in thin-film electrochemical coatings based on tin, which do not contain lead, during their long storage. The purpose of the study is to develop technological regimes of electrolysis, which ensure minimization of the probability of the appearance such defects and reliable operation of radio electronic equipment The problems of tin and lead-free alloys based on it, as well as methods of elimination of such potential defects as the formation of “whiskers” are considered. To control the growth of “whiskers” in the post-electrolysis period (12 months of natural aging under laboratory conditions), a Sn-Bi coating was chosen, which was formed using both a constant and a pulse-reversed current. Based on the results which were obtained with scanning electron microscope, it was established that deposition of an alloy using pulsed and reverse current not only improves the structure of the coatings formed, but also significantly reduces the propensity to form whiskers, their length and density per unit area in comparison with coatings obtained with direct current. Possible reasons for achievement of high quality electrochemical coatings with Sn-Bi alloy have been established. The slowest growth of “whiskers” was obtained at reversed current with an average density i av= 2 A/dm2, frequency f = 1 Hz and duty ratio γ = 1.5.
MECHANICAL ENGINEERING AND MECHANICS
POWER ENGINEERING, HEAT AND MASS TRANSFER
Wide spread of technogenic sources of ionizing radiation such as particle accelerators and nuclear reactors leads to appearance of a number of applied metrological tasks aimed at providing spectrometric and dosimetric ionization measurement instruments, located in photon radiation fields with energy to 10 MeV. Gamma rays with energy higher 3 MeV may be acquired using radioactive thermal neutron capture on target, i.e. (n, γ)-nuclear reaction. Titanium is used in the range of energies to 7 MeV; nickel – to 10 MeV. A simplest source of instantaneous neutron capture gamma-ray should consist of fast neutron source, neutron moderator and a target irradiated with thermal neutrons. The collimator with thermal neutron geometry of АТ140 neutron calibration facility with 238Pu–Be fast neutron source may be used (IBN–8–6) as a source of gamma-ray with energy to 10 MeV. Monte-Carlo models of thermal neutrons geometry, facility and 238Pu–Be fast neutron source were built using MCNP–4b code. Energy distribution of flux density of neutron capture gamma–ray for titanium and nickel targets was defined. A spectrometric detector based on LaBr3(Ce) crystal Ø 38×38 mm with non-linear characteristics of channel-energy transformation in the range up to 10 MeV, was specifically manufactured for instrumental support of the experiment at SPE “ATOMTEX”. The results for Ti, Ni, and for bare 238Pu–Be neutron source were acquired. During the experiment a possibility to use neutron capture gamma-ray field formed by thermal neutrons geometry of АТ140 neutron calibration facility with 238Pu–Be-fast neutron source with Ti and Ni targets for calibration LaBr3(Ce) spectrometers for energy to 10 MeV was confirmed. Closely stationing polyethylene plate in collimator channel provides significant increase in output of reference radiation from target simultaneously decreasing unneeded parts of the spectrum.
DIAGNOSTICS AND SAFETY OF TECHNICAL AND ENVIRONMENT SYSTEMS
SCIENTISTS OF BELARUS
ISSN 2524-244X (Online)